

Central Asia experiences In drought management

Central Asia

Central Asia is region, where drought is routine condition of life and crop production and agricultural production are adapted to such enormous climatic conditions.

The Basic Indicators of Water and Land Resources Development in the Aral Sea Basin

Indicator	Indicator Unit 1960	1960	1980	1990	2010	Forecast (2020)	
Andreaton						Optimistic	Pessimistic
Population	million	14,4	26,8	33,6	48.5	54,0	70,0
Irrigated area	thousand hectares	4510	6920	7600	8201	9330	9300
Irrigated area per capita	ha/capita	0,32	0,26	0,23	0.17	0,17	0,12
Total water withdrawal	km ³ /year	60,61	120,69	116,27	109.5	104,5	117,0
Including for irrigation	km ³ /year	56,15	106,79	106,4	91.6	80,80	96,7
Specific withdrawal per 1 hectare	m³/ha	12450	15430	14000	11171	9300	10400
Specific withdrawal per capita	m ³ /capita	4270	4500	3460	2259	1935	1670
GNP	bln.USD	16,1	48,1	74,0	76.7	109	77,0

b) Climate change Uzhydromet

Long-term changes of the annual sums of precipitations

Annual national temperatures increased by:

- 0.29 0C every 10 years in Uzbekistan (1950– 2005);
- 0.26 0C every 10 years in Kazakhstan (1936– 2005);
- 0.18 0C every 10 years in Turkmenistan (1961–1995);
- 0.10 0C every 10 years in Tajikistan (1940– 2005);
- 0.08 0C every 10 years in Kyrgyzstan (1883– 2005).

Frequency of dry year occurrence is 4.25 year on average

Frequency of dry year occurrence is 3 year on average

Extreme event occurrence

TotalRunoffofNaryn,Karadaryaand Chirchik Rivers

Суммарный сток Нарын, Карадарья, Чирчик

c) Anthropogenic drought

Most dangerous type of drought it's anthropogenic, manmade, which is caused by wrong methods of water managing, allocation and operation.

Change in landscape on the exposed bed of the Aral Sea

Amudarya channel

Change in vegetation. Withered trees and bushes

Principal directions of Climate changes program in Central Asia

- Public Awareness
- Adaptation

Forecasting activity and broad information allow designing and implementing adaptive complex.

All adaptation measures related to agriculture and water should be divided on three levels:

- national measures, including strategy;
- regional measures (taking into account transboundary waters);
- local level, especially farm level adaptive response.

Change of growing period

Change in vegetation cover

Days

Late ripening variety

Base option

Climate change

Phenological phase

Crossing over the Limits Established for Air Temperatures

Cp – present conditions, 1 – under climate changes: using data of weather stations in Tashkent and Kashkadarya provinces)

Practices used by farmers

Water monitoring and management

Traditional method of water saving in time of drought is "alternative" irrigation - water is applied not to each furrow, but to every other one

Water productivity

Irrigation schemes	Inflow (growing season)	Inflow changes against the control	Yield	Yield changes against the control	Irrigation water productivity	Productivity changes against the control
	m3/ha		kg/ha			
Alternate irrigation (with filmy)	725	-20	5400	35	7.4	69
Every furrow irrigation (with filmy)	915	1	5520	38	6.0	37
Alternate irrigation (without filmy)	730	-20	3400	-15	4.7	6
Every furrow irrigation (without filmy)	907	0	4000	0	4.4	0

Irrigation by water mixed with manure (local name "sharvat"). Water to irrigated field flows through a big hole, in which manure is put preliminary for proper mixing with water and following delivery to furrow

30% attempted to reduce losses by mulching of furrow or installation of polyethylene strip in head of furrow.

No.	Applied water conservation tech- nology	Nature of technology	Water conservation effect, in comparison with usual irrigation technology	Are widely used on irriga- tion objects of oblsts:	
1	Concentrated irrigation and water rotation	Plot canal discharge is directed in concen- trated form to next irrigation plot. Water rotation is used under irrigation of large water use objects.	At the expense of concentrated water supply, by 10-20 % (of water supply) organizational losses are reduced, constituting under water supply «disperse» on majority of anabranches up to 30-35% of water supply to irrigated contour.	 Fergana, Sogd Osh, Jalalabad. 	
2	Irrigation with alternating irrigated and dry row- spacing	Non-irrigated row-spacing is maintained by cultivation in loose state, hereunder providing favorable air-gas exchange in crop root-zone. Fertilizer application in non-irrigated row- spacing prevents its opportunity to be washed out root-zone limits, providing its effective use.	At the expense of reducing physical evapora- tion from soil surface total water consumption decreases. In comparison with water supply to each furrow irrigation water saving reaches 20-25 %. Irrigation missing row-spacing promotes bal- ance of crop growth and development.	 Fergana, Sogd Osh, Jalalabad. 	
3	Tier furrow irrigation with in-contour use of releases	Irrigation on short 60-100 m furrows is started with the first tier, on the next tier fur- row heads are constructed. After irrigation current advance to output furrow of the sec- ond tier forming release is directed to output furrow and supplements discharge, diverted from «shokh»-aryk. In such order irrigation is carried out on next tiers.	Water conservation effect reveals in reduc- tion by 15-20 % (of water supply) losses for surface release outside irrigated field, be- cause surface release not used in given irri- gated contour forms only on the last tier. Tier irrigation provides uniform moistening of irrigated plot.	 Fergana, Sogd Osh, Jalalabad. 	
4	Alternate stream irrigation	Under alternate stream irrigation after irriga- tion stream advance front to furrow end the stream is double reduced in accordance with decreasing infiltration rate.	Water conservation effect reveals in reduc- tion by 15-20 % (of water supply) losses for surface release outside irrigated field. Moistening uniformity increases along furrow length. Conditions are created for stable crop development.	 Fergana, Sogd Osh, Jalalabad. 	

Change in area of water-allowance zones

Improving accuracy of water delivery from ±10% to ±2%

Groundwater					
level, m	>3		2-3		1-2
Water-		Water-		Water-	
allowance zone		allowance		allowance	
		zone		zone	
Ι	-691.82	IV	2283.01	VII	2894.49
II	-18192	V	8490.92	VIII	14224.5
III	-14096	VI	2071.08	IX	3015.73
Total	-32980		12845		20134.7

Use of water by winter wheat, depending on year's water availability

Regional (transboundary) management

SCADA system of automation control

Farmer training in adapting to climate change

Stabilization and use of the dried Aral Sea bed

- Central Asian countries have to develop their own National Policies to deal with climate change, where the development of alternative environmentally friendly energy sources and energy efficiency should become key priorities. They should also take responsibility for financing the implementation of these policies.
- Policies and activities for preventing climate change and climate change adaptation should be integrated into the socioeconomic development policies. The countries of the region should improve intersectoral and interdepartmental coordination.

- The transfer of new techniques and methods for climate change adaptation and emissions reduction should be combined with the transfer of relevant knowledge and skills to local experts in order to develop and establish local production, service industry, and to build capacity in whole.
- The process of development and implementation of policy in the sphere of climate change should be open and transparent. Governments and governmental bodies need to hold broad consultations with communities and take into account opinions of public organizations while making decisions.