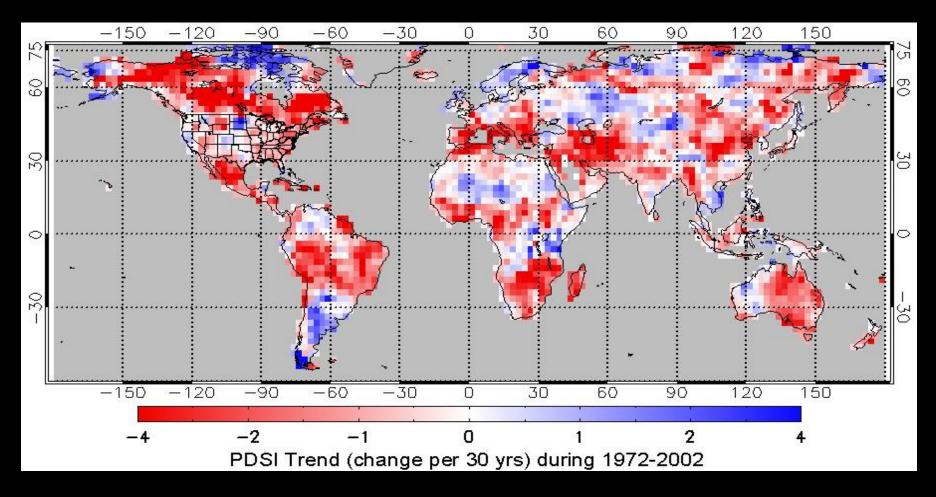


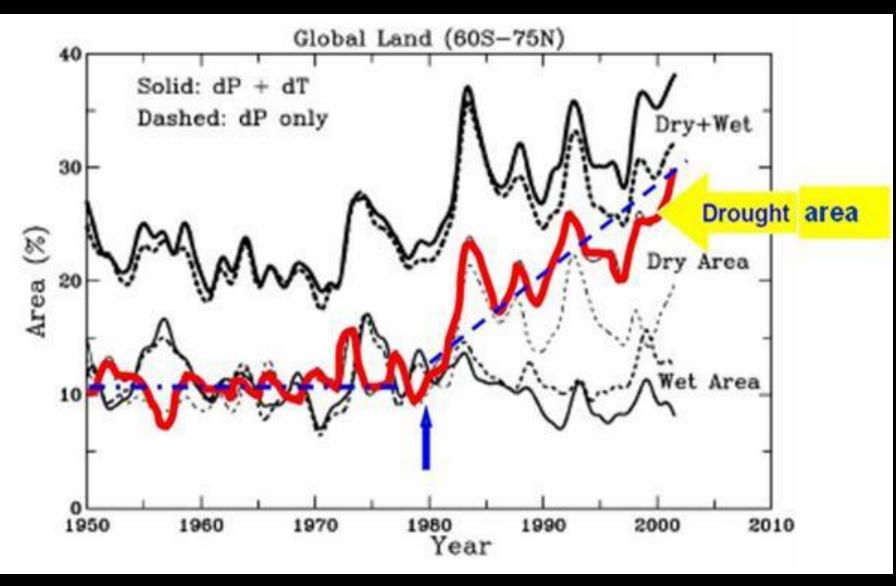
Drought Monitoring & Management – An Indian Experience



Ravinder Kaur

Project Director Water Technology Center Indian Agricultural Research Institute, New Delhi Email: pd_wtc@iari.res.in

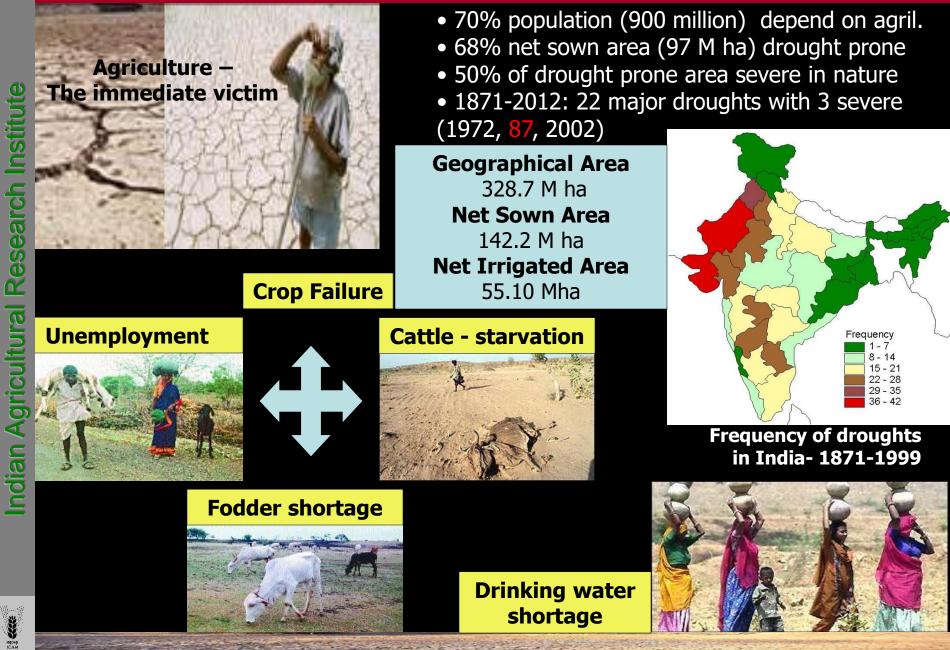
Spatial and Temporal Distribution of Global Drought



 Second most geographically extensive hazard, after flood, and covers 7.5 per cent of the global land area

• Accounts for about 40% of the people impacted by all natural disasters.

• In last 30 years, an obvious drying trend has been observed across the semiarid regions of the globe.


Drought impacted area - Global trend

Significant increase in the drought impacted area in post - 1980's.

Drought : A Silent Threat to Indian Rural Economy

J	Drought is a state subject	State	Criteria for drought declaration
	 Declaration of drought at state level 	Andhra Pradesh	 Block level rainfall Block level crop sown area
	i. Based on Large area unsown		 Yield reduction Dry spells
	Or	Karnataka	Rainfall
5	ii. Wait till end of season (Oct/Nov) to		Dry weeks
1001	realize the yield	Maharashtra	Yield loss, 100 point scale
	Memorandum of scarcity	Odisha	Block level rainfall, Crop assessment
	Verification by Central Govt.	Rajasthan, UP and J & K	Yield loss criteria

No unified and standard criterion for drought declaration

The year of the loss

нрэнц

Rainfall Deficiency / Yield loss/ Red. cropped area at Block and District level

Crop Weather Watch Group A nodal Inter-ministerial Group within the MOA responsible for all matters of drought;With experts from climate, water, crop, input supply, extension, power & R&D agencies.

District Collector monitors his district

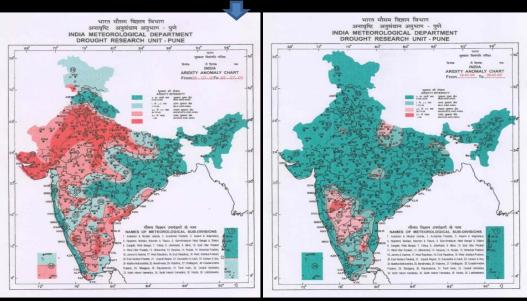
State level drought is watched by State Relief Commissioner

Estimation of losses

Declaration

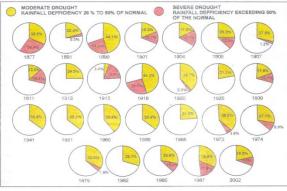
Verification by Federal Teams

Relief Quantum is decided

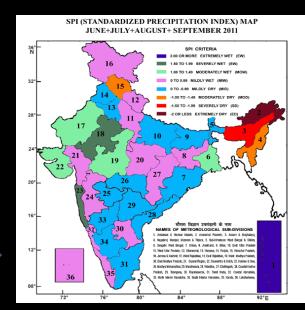


Drought Monitoring by Indian Meteorological Department

IMD carrying out meteorological drought monitoring since 1875 based on meteorological indices:

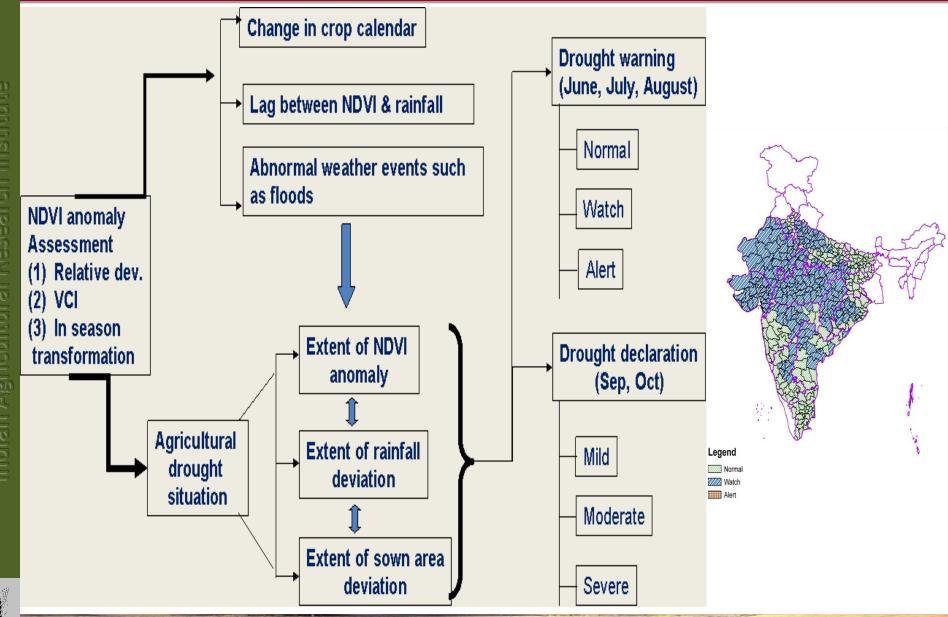

1. Percent deviation of Rainfall from Normal

2. Aridity Anomaly Index (AAI)



July 2002

3. Standardized Precipitation Index (SPI)

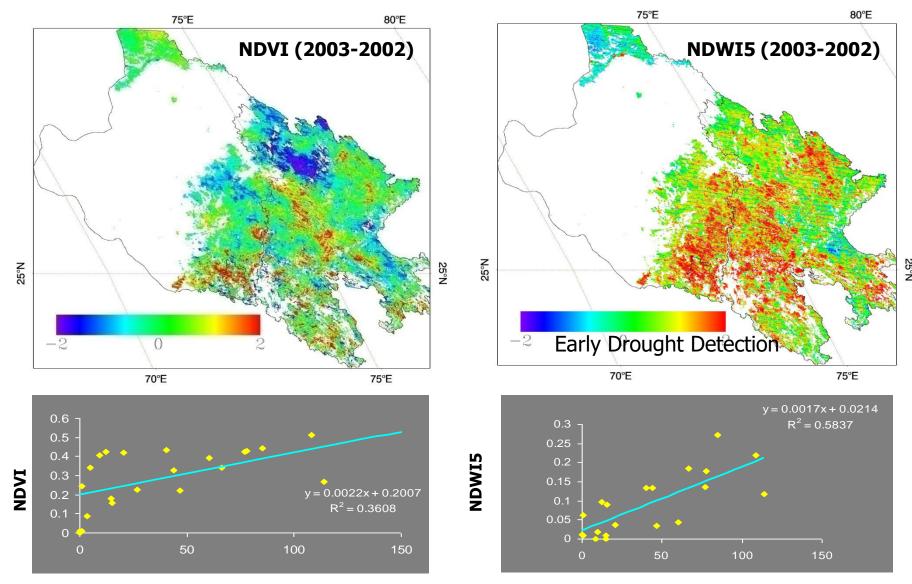

Contraction of the second

4. Seasonal All India Summer Monsoon Rainfall Forecast (1st in April revised in June)

July 2003

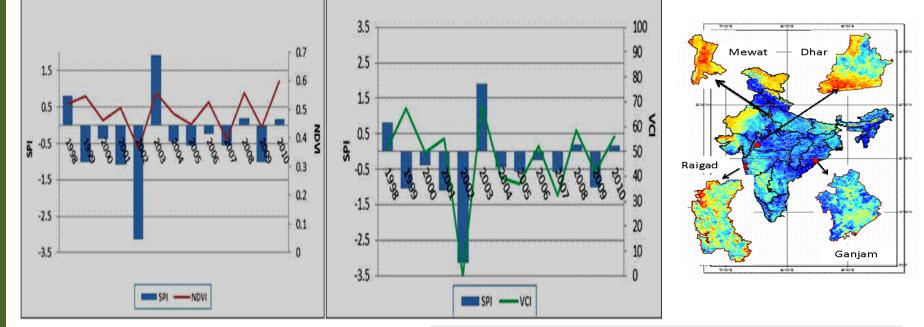
HIPSHAR ICAR

Drought Assessment from Space : National Agricultural Drought Assessment and Monitoring System (NADAMS, NRSC, India)

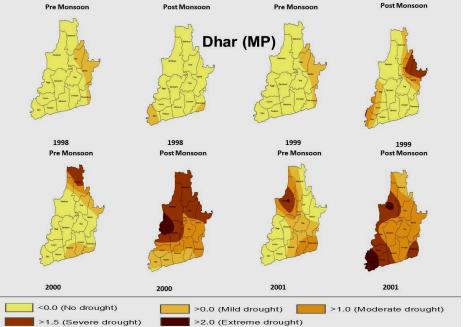


Our University- Initiatives

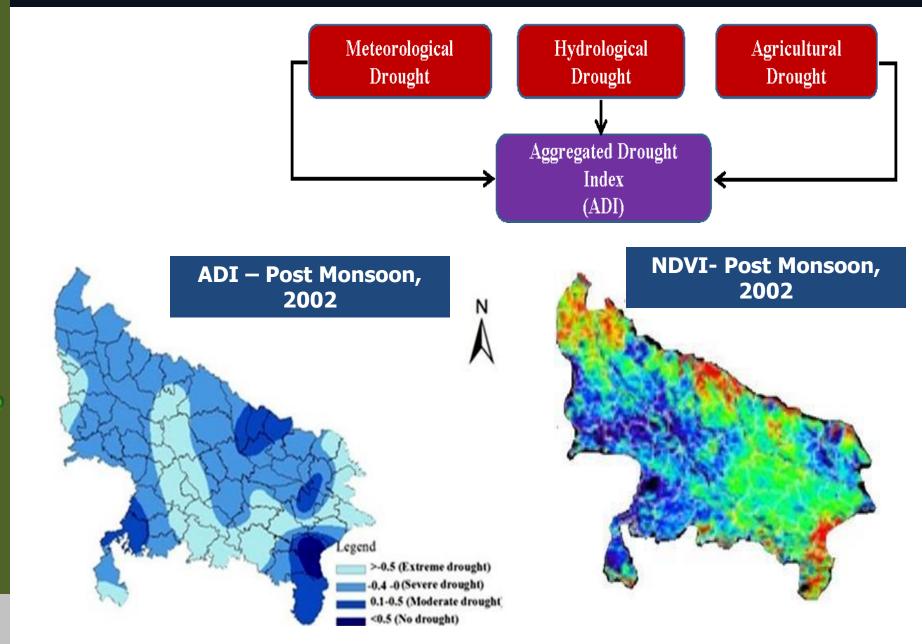
Agricultural Drought Monitoring Using NDVI and NDWI



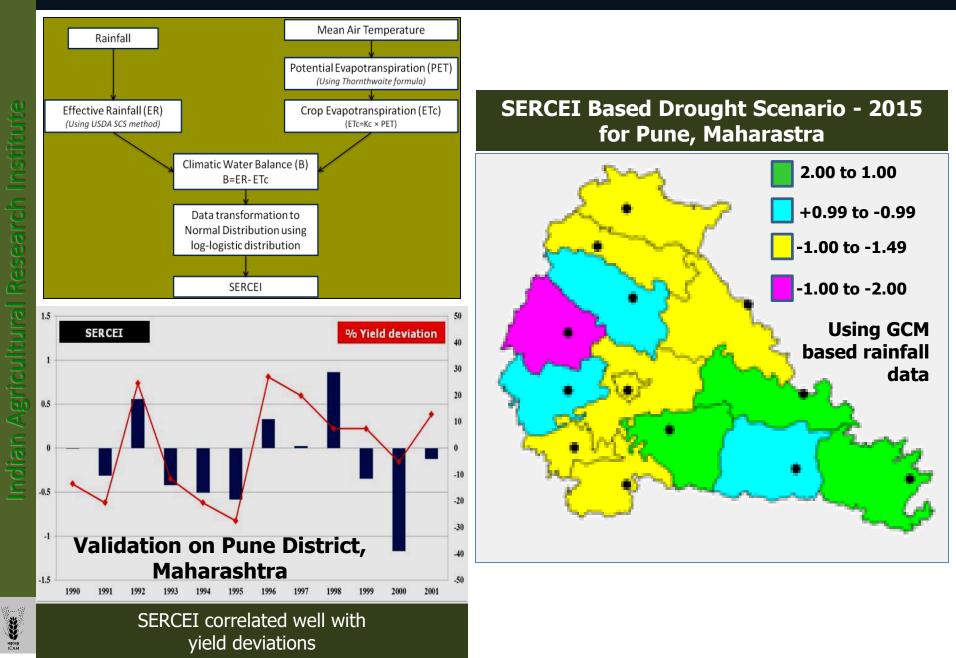
Rainfall(mm)


NIPSHI ICAR

Meteorological and Hydrologic Drought Monitoring


Standardized Water Level Index - Hydrologic Drought

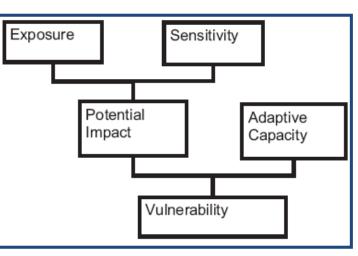
HIPSHIE ICAR

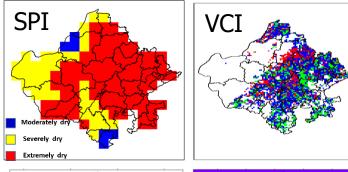

Drought Monitoring Using Composite Indices

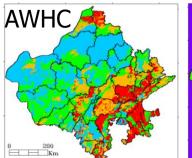
Drought Monitoring Using Composite Indices

Agricultural Drought Vulnerability Mapping

Drought vulnerability essential to : Design area specific crop contingency/ mitigation plans and Devising drought declaration criteria


• Exposure:


Frequency & Intensity of Standardized Precipitation Index (**SPI**), monthly rainfall 1951-2006.


• Sensitivity:

Frequency & Intensity of Vegetation Condition Index (VCI), Fortnightly AVHRR Satellite data 1982-2003.
Water Holding Capacity of Soil, NBSS&LUP soil map
Land-use, satellite derived

- Adaptive Capacity:
 Percent irrigation in grid
- Composing: Multi-criteria Evaluation was used to derive relative weights

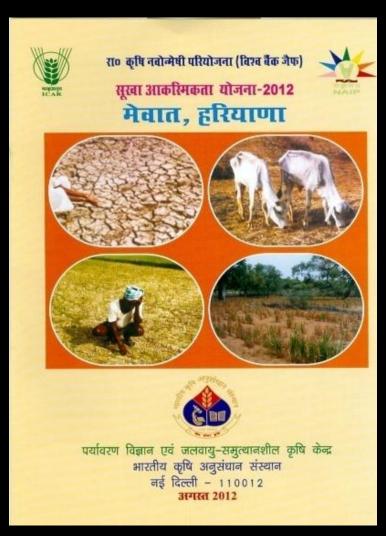
- Renovation of Soil/ Water Conservation Structures & Community Ponds
 - Laser leveling
 - Laying of underground pipeline
 - Sprinkler
 - Rain gun
 - Drip irrigation systems

ISSUES OF CONCERN Long dry spells during monsoon Limited water availability during non monsoon period Heavy Pumping of Wells Poor Water Quality In-efficient water conveyance and application <u>Traditional un-controlled flood irrigation</u> Mewat - One of the most backward regions in the country

Impact of Water Saving Interventions

Dist.	Water Saving Technologies	Water Saved/ha /season (Cu. m)	Time Saved per irrigation (hr)	GHG Gas Emission Reduction (Kg CO2 /ha)
Nuh	Laser leveling	578	5-6	100.5
	Sprinkler Raingun	693	6-7	121
	Underground Pipeline	500	3-4	60
Taoru	Laser leveling	576	5-6	100.5
	Sprinkler Raingun	693	6-7	111
	Underground Pipeline	432	3-4	60

Jun/Jul Rainfall: 30mm (210 mm normal)


Cumulative Rainfall deficit: > 80% (Up to 15 Aug 2012)

SPI: -1.50 to -1.99

Late Aug.: Vegetable Crops (Okra/Cowpea/Chilli)+ Plant Protection support

Sept.: Early Mustard + Vegetables (Brinjal/ Tomato/Cauliflower) + Late Wheat

Oct: Fallow (Deep Ploughing + Levelling), for those who couldn't take Mustard by Mid. Oct.

Impact of Contingency Plan – Vegetable Crop Intervention (Rainy Season)

Okra	Pusa A-4	New	Rs.45,000	
		Introduction	(US 670)	
Chilli	Pusa	60	Rs.	
	Sadabahar	beneficiaries	60,000(US	
			1000)	
Cow pea	Pusa	New	Rs. 40,000	
	Sukomal	Introduction	(US 597)	

Rs. 20-25 thousand (or US300 - 370)/ha higher over Pearl Millet

HIPSHU

Impact of Contingency Plan – Vegetable Crop Intervention (Early Winter)

Сгор	Varieties/ Hybrids	Seed	No. of benefi- ciaries	Yield (t/ha)	Income (Rs/ha)
Brinjal	Pusa Hybrid -5 Pusa Hybrid -6 Pusa Hybrid -9 Pusa Uttam Nun-707	2500g	30	40.0-45.0	70,000 – 75,000
Bottle gourd	Pusa Naveen	500g	16	32.5- 45	61000- 80000
	Mahyco No.8	500g		40.0 - 45	75000 - 80000
	Sungrow Vidhya	500g		33.0	63000 (US 940)
Tomato	Himsohna US 2853 Pusa Hybrid-8 Others(Dev)	700g	20	35 – 65.0	1,00,000 – 1,50,000 (US 2300)

•Farmers raising Vegetable in furrow system in Mewat

•Brintal- 40.0-45 C t/ha •Profit Rs. 70,000 -75,000/ha

Bottle guard -30.0-35.0 t/ha

Profit Rs. 61,000 - 75,000/ha

•Tomato : 35.0 t- 65.0 t/ha & •Profit : Rs. 1,00,000 - 1,50,000/ha

Pusa hybrids early & tasty While Private hybrids late

Impact of Contingency Plan – Early Mustard + Late Wheat Intervention (Winter Season)

Special early sown (Sept 2nd week) mustard (Cv. PM 25 & 28) introduced to enhance productivity / unit areas during post rainy season in Mewat

Adaptation of early mustard (Cv. PM 25 & 28) followed by Late wheat (WR 544) / Summer Vegetables in Mewat

mKRISHI[®] services for strengthening of adaptation initiative

Public-Private Partnership with TCS

Interventions

Periodic de-worming/ Medication Provisioning of Mineral Mixture and dietary supplements for 5 months Promoting Multi-cut Fodder Sorghum – 450 Households

<u>Impacts</u>

✓ 16% increased milk yield/day/head (Control – 7.38 lit/d and project intervention - 8.57 lit/d)
✓ Household income Increase by Rs. 8,000/animal/lactation period

Impact of Other Livelihood Improving Strategies

• Establishment of stitching and tailoring centre

- Assignments of school dress in process
- Linkage with NGO for market integration
- •Training also organized in another cluster of villages

HIPSHU

Collaborations/Partnerships

MOU between IARI and The University of Nebraska/ Daugherty Water for Food Institute Development of a prototype toolbox for :

Near real time drought monitoring and early warning based on composite indices.

Quantitative Estimation of Drought Impacts on Agriculture

Sensor operated precision-irrigation / fertigation systems for cropping systems of drought prone areas

Deciphering gene networks/ allelic variations for genetic engineering of drought tolerant target crops

- South west monsoon contributes 80 % of total rainfall in India during four months *i.e.* June to September.
 - Drought recognized with a rainfall deficiency of more than 20%.
- Meteorologically, ± 19% deviation of rainfall from the long-term mean is considered 'normal' in India. Deficiency in the range 20–59% represents 'moderate' drought, and more than 60% is 'severe' drought.
- A year is considered to be a DROUGHT YEAR when the area affected by moderate and severe drought, either individually or together, is 20- 40% of the total area of the country.
- When the spatial coverage of drought is more than 40% it is called as ALL INDIA SEVERE DROUGHT YEAR.

