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SYNOPSIS 

The impact of climate change is likely to have considerable implications for water resource 

planning, as well as adding to the risks to water infrastructure systems and effecting return on 

investments. Attention is increasingly being paid to adaptation strategies at the regional and basin 

level; however, the current paucity of information regarding the potential risk to hydrological 

systems at this scale presents a substantial challenge for effective water resources planning and 

investment. This study is intended to help bridge the gap between high-level climate change 

predictions and the needs of decision-makers—including World Bank Task Team Leaders, 

government agencies, investors, and national economic development planners—whose programs 

and investments will be affected by basin- and regional-level impacts of climate change on water 

resources and related infrastructures.  

 

This study evaluates the effects of climate change on six hydrological indicators across 8,413 

basins in World Bank client countries. These indicators—mean annual runoff (MAR), basin yield, 

annual high flow, annual low flow, groundwater (baseflow), and reference crop water deficit—were 

chosen based on their relevance to the wide range of water resource development projects planned 

for the future. To generate a robust, high-resolution understanding of possible risk, this analysis 

examines relative changes in all variables from the historical baseline (1961 to 1999) to the 2030s 

and 2050s for the full range of 56 General Circulation Model (GCM) Special Report on Emissions 

Scenario (SRES) combinations evaluated in the Intergovernmental Panel on Climate Change 

(IPCC) Fourth Assessment Report (AR4). 

 

To make this information easily accessible to Task Team Leaders and World Bank clients, the 

results from this study are available on the World Bank Climate Portal, a Web-based interface. On 

the Climate Portal, users can access graphic presentations illustrating the severity (that is, low, 

medium, high) of change that is projected for all of the studied variables in any country, basin, or 

country–basin intersection of interest. Users can also access tabular and graphic representations of 

all climatic and hydrological projections for analyzed areas. 

 

Importantly, the results presented in this study are not intended for use at the project level; 

however, because the results provide an indication of risk or threat at the sub-basin level, they 

might appropriately provide input into decisions about the extent of analyses of climate change to 

be carried out at the site-specific project level. 

 

The purpose of this document is to explain in-depth the methods used to develop these climate risk 

outputs, the reasons for the selected methodology, and the limitations of this research. 
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1. INTRODUCTION AND BACKGROUND 

It is now clear that, due to altering future temperature and precipitation patterns, climate change will 

significantly impact water supply and demand throughout the world. Varying spatially and temporally, 

these impacts are likely to have considerable implications for water resource planning as well as adding 

to the risks to water infrastructure systems and effecting return on investments in these systems (IPCC, 

2007). 

 

The variability of types of impacts has important implications for localized planning and water resources 

development; as a result, attention is increasingly being paid to adaptation strategies at the regional and 

basin level. However, the current paucity of information regarding the potential risk to hydrological 

systems at this scale presents a substantial challenge for effective water resources planning and 

investment. 

 

1.1 Intended Use of Findings  
 

The projections generated by this Analytical, Advisory Activity (AAA) study are intended to help bridge the 

gap between high-level climate change predictions (see IPCC, 2007) and the needs of decision-makers—

including World Bank Task Team Leaders, government agencies, investors, and national economic 

development planners—whose programs and investments will be affected by basin- and regional-level 

impacts of climate change on water resources and related infrastructures. The results presented here are 

not intended for use at the project level; however, because the results provide an indication of risk or 

threat at the sub-basin level, they might appropriately provide inputs into decisions about the extent of 

analyses of climate change to be carried out at the site-specific project level. Thus, this AAA study is 

intended to serve three purposes: 

 

 To assist decision-makers and stakeholders in assessing and planning for the climate risk to water 

resources and development in their regions.  

 To assist World Bank Task Team Leaders and client country decision-makers in deciding on an 

appropriate level of effort for further studies at the project level. 

 To stimulate additional, more detailed research at the regional and basin scales. 

 

1.2 Relevant Prior Work and Links to Other Studies 
 

This study is designed to build upon and extend prior work on global water resources risk under climate 

change, particularly the World Bank study by Alavian et al. (Alavian et al., 2009). Similarly to this study, 

Alavian et al. evaluated how climate change would affect hydrological indicators in World Bank client 

country basins; however, Alavian et al. only assessed basin-level changes in water resources under three 

climate scenarios—dry, medium, and wet—for each of the six World Bank regions. All World Bank 

regions (Latin America and Caribbean, Europe and Central Asia, Middle East and North Africa, Africa, 

South Asia, and East Asia and Pacific) are continental in scale. When the approach in Alavian et al. is 

used to assess water resources at the (sub-)basin or country level, it becomes clear that the climate 
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scenarios that result in dry, medium, and wet conditions at the continental scale might not correspond 

with the same climate scenarios for a particular country or basin within a given World Bank region. For 

example, the dry scenario for Africa might not be the dry scenario for Uganda or the Zambezi; the dry 

scenario might actually result in wetter conditions in these areas than do most other climate scenarios. 

Alavian et al. made evident, therefore, the levels of aggregation and the related scenario—that is, the wet, 

medium, or dry scenario—must be selected at the scale of interest to achieve the desired result. 

 

Furthermore, the study by Alavian et al. clearly illustrated the importance of risk. By analyzing the full set 

of 56 climate scenarios for each basin, the current study explores the total extent of potential hydrologic 

outcomes possible within each of the world’s basins. Indications of the likely outcomes as well as 

extremes are important for planning at the basin or country level and for making decisions on the 

appropriate level of effort for further analysis at the project level.  

 

Several other studies have evaluated the effects of climate change on global water availability, but few 

have estimated the effects on a broad range of hydrological indicators and, to our knowledge, only 

Alavian et al. have studied changes in hydrological indicators across a broad suite of climate scenarios. 

Vörösmarty et al. (Vörösmarty et al., 2000) analyze the effect of climate change on global runoff at the 0.5 

 0.5 degree grid scale, using the Water Balance Model (WBM). This study, however, relied on only two 

General Circulation Models (GCMs) to generate projections. Employing a macro water model, Arnell 

(Arnell, 2004) considers the effects of 24 climate scenarios—four Special Report on Emissions Scenario 

(SRES) scenarios across six GCMs—on future runoff in 1,300 basins globally. However, Arnell focuses 

on runoff alone, rather than on multiple indicators of hydrological change. Milly et al.’s article (Milly et al., 

2005) considers the outputs of 12 GCMs in their analysis of how climate change will affect runoff in 163 

river basins, but also does not focus on diverse hydrological indicators. Using the WaterGAP model to 

compute monthly river discharge under climate change at both a grid and basin scale, Alcamo (Alcamo et 

al., 2007) evaluate the effects of climate change on worldwide water availability using a global runoff 

model; however, this analysis only used two GCMs under the A2 and B2 SRES scenarios (discussed in 

Section 2.1.3). 

 

The results generated by this study have provided the basis for much work on water and climate change 

in the World Bank, including, but not limited to, work in the Sava Basin (Danube tributary), in Botswana, 

on the Uganda Water Resources Assistance Strategy, on the Zambezi River Basin, and on confronting a 

changing climate in Michoacán.
2
  

 

                                                      

2 Kindler, J. et al. 2010. Water and Climate Adaptation Plan for the Sava River Basin (Draft):. Europe and Central Asia. 
Washington DC: World Bank. July. 

World Bank. 2010. Botswana Climate Variability and Change: Understanding the Risks. November. 

McCluskey, A. 2010. Climate Change and Water Resources in Uganda: Review of Previous Studies and Climate Change 
Projections. Technical Report submitted to World Bank. 

World Bank. 2010. The Zambezi River Basin: A Multi-Sector Investment Opportunities Analysis. June. 

World Bank. 2010b. Confronting a Changing Climate in Michoacán. 



Climate Variability and Change: A Basin Scale Indicator Approach to Understanding the Risk to Water 

Resources Development and Management 

 

3 

 

1.3 Key Indicators for Screening of Water Resource Projects 
 

A host of physical and socioeconomic indicators are important for water resource project screening and 

planning. Physical indicators reflect conditions associated with geology, land characteristics, hydrology, 

hydrogeology, meteorology, water quality, and ecology; socioeconomic indicators provide insight into 

conditions related to institutions, demographics, economics, finance, legal systems, and culture (Helwig, 

1985).This study focuses solely on hydrological indicators. 

 

Table 1-1 provides an overview of typical water projects and the most relevant hydrological indicators for 

project screening. For example, when evaluating irrigation projects, mean annual runoff (MAR), reference 

crop water deficit, basin yield, baseflow, and monthly and annual low-flow events (described in Section 

2.1.1) are the most relevant set of hydrological indicators. Each of these identified hydrological indicators 

is useful for providing insight into the risk of climate change on certain types of water projects; however, 

monthly low-flow events and daily, weekly, and monthly high-flow events were not analyzed due to the 

absence of a sufficiently detailed global data set. 

 

Table 1-1.  Hydrological Indicators for typical water projects  

 

WATER PROJECT 

MOST RELEVANT HYDROLOGICAL 

INDICATORS 
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Irrigation and Drainage 

Irrigation           

Drainage              

Water Supply and Sanitation 

Large-scale water supply 
(urban) 

           

Small-scale water supply (rural)          

Wastewater treatment           

Urban drainage             

Flood Protection 

Levies          

Flood-control storage             

Watershed management          
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River Basin Management and Multipurpose Infrastructure 

Single-purpose agricultural 
reservoirs 

               

Single-purpose hydropower 
reservoirs 

             

Multipurpose reservoirs             

Key:           

Evaluated in this study           

Not evaluated in this study           

Source: (Helwig, 1985)          

 

1.4 Report Overview 
 

As explained previously, Alavian et al. (Alavian, 2009) examined risks of climate change to the water 

sector at the basin (catchment) scale in an attempt to translate climate projections into projections of 

hydrologic indicators deemed useful for policy and planning of water investments. While Alavian et al.’s 

findings were helpful in developing a regional scale understanding of climate risk to water resources, the 

methodology employed did not produce results relevant at the basin level.  

 

Building on the work of Alavian et al., this analysis provides projections for localized changes in climate, 

meteorological conditions, and hydrology under a range of possible future climate conditions for 8,413 

river basins in World Bank client countries by region. To achieve these projections, this study examines 

the range of possible effects of climate change on temperature and precipitation, potential 

evapotranspiration (PET) and Climate Moisture Index (CMI), and runoff and six related hydrological 

indicators. To generate a robust high-resolution understanding of possible risk, this analysis examines 

relative changes in all variables from the historical baseline (1961 to 1999) to the 2030s and 2050s for the 

full range of 56 GCM SRES combinations evaluated in the Intergovernmental Panel on Climate Change 

(IPCC) Fourth Assessment Report (AR4). The data, methods, and tools used in this analysis are 

described in full in Section 2. 

 

The intent of this research is to evaluate changes in risks to water resources at the basin level; therefore, 

this analysis provides relative changes in variable values rather than absolute magnitudes. The focus of 
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this analysis is on six hydrological indicators: MAR, basin yield, annual high flow (q10), annual low flow 

(q90), groundwater (baseflow), and reference crop water deficit. These indicators are described in detail 

in Sections 2.1 and 2.5.  

 

To present a sense of the severity of climate change risk to each basin, exposure indices using a low, 

medium, and high scale were developed for the hydrologic indicators. In other words, for every basin, 

each indicator was categorized as facing a low, medium, or high level of threat from climate change. The 

exposure indices are explained in greater detail in Section 2.5. 

 

To make this information easily accessible to Task Team Leaders and World Bank clients, the results 

from this study are available on the World Bank Climate Portal, a Web-based interface. On the Climate 

Portal, users can access graphic presentations illustrating the severity (that is, low, medium, high) of 

change that is projected for all of the studied variables in any country, basin, or country–basin intersection 

of interest. Users can also access tabular and graphic representations of all climatic and hydrological 

projections for analyzed areas; Section 3 presents illustrative results and a discussion of potential uses 

for this information.  

 

Appendices A through C provide additional information on the historical baseline data sets and the 

hydrological model employed in this analysis. More information about the World Bank Climate Portal can 

be found in Appendix D, and the naming convention for the river basins is included as Appendix E. 

Appendices F and G present case studies that assess the impact of climate variability and change and 

adaptation strategies development in Botswana and Michoacán, Mexico.  

 

The purpose of this document is to explain in-depth the methods used to develop these climate risk 

outputs, the reasons for the selected methodology, and the limitations of this study. 
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2. METHODOLOGY: A BASIN SCALE INDICATOR APPROACH 

The approach applied in this analysis provides a robust yet tractable evaluation of the changes in risk to 

water resources due to climate change at the regional and basin scale for World Bank client countries. 

The intent of this study is to generate an understanding of the relative change in variable values, not 

absolute magnitudes of variable values. The results therefore provide an understanding of the range of 

potential consequences of climate change on water resources at the country and basin scale. These 

results are suitable for  use as inputs to screening-level analyses of the impact of climate change on 

water-resource-dependent investments, such as irrigation and hydropower. 

 

Expanding on prior work, this analysis incorporates a rigorous assessment of climate change outcomes 

for 8,413 river basins of the world, including monthly meteorological variables, and selected hydrological 

indicators under all 56 GCM-SRES climate change scenarios. The modeling process used to achieve this 

is presented in Figure 2-1.  

 

This section provides an explanation of the analytical framework used in this study and describes the 

methods and data inputs employed. Uncertainties associated with the approach and data used are also 

addressed. 

 

2.1  Analytical Framework 
 

As portrayed in Figure 2-1, GCMs lie at the beginning of the analysis process. Projected changes in 

monthly temperature and precipitation for the 2030s (2030–2039) and the 2050s (2050–2059) were 

collected for each basin from all of the 56 available GCM-SRES combinations used in the IPCC AR4. 

Changes in these parameters were calculated from the historical baseline of 1961 to 1999. These 56 

GCM scenarios, which incorporate three green house gasses emissions scenarios and 22 GCM 

frameworks (see Section 2.1.3), reflect the large variability in possible precipitation and temperature 

outcomes, as well as the likely variation in spatial distribution of these outcomes. Monthly GCM outputs 

were used in this study to capture seasonal variability in meteorological conditions over the year. The 

2030s and 2050s were selected as the appropriate timeframe at which to evaluate the impacts of climate 

change on various hydrologic variables for two reasons: this is the relevant time-scale for current 

infrastructure planning, and uncertainties in projections increase dramatically beyond 2050.  

 

Once projected changes in monthly temperature and precipitation for the 2030s and 2050s were gathered 

from all 56 GCM scenarios, these projections were then combined with historical data for the baseline 

period—1961 to1999—to produce absolute temperature and precipitation projections for each basin. 

These absolute temperature and precipitation projections were used to calculate projections for PET and 

CMI through use of the Modified Hargreaves model (Allen et al., 1998, Droogers and Allen, 2002). To 

generate runoff projections, inputs of PET, absolute temperature, and absolute precipitation projections 

were used in the climate runoff model (CLIRUN)-II, a two-layer, one-dimensional rainfall-runoff model. 

These processes and calculations are described below, and further details about CLIRUN-II are provided 

in Appendix B. 
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Figure 2-1.  Diagram of the modeling process used in this study 

 

Source: Authors’ representation of modeling framework 

 

Runoff projections created by CLIRUN-II coupled with climate projections were then used to analyze the 

potential effect of climate change on the six hydrological indicators.  

 



Climate Variability and Change: A Basin Scale Indicator Approach to Understanding the Risk to Water 

Resources Development and Management 

 

8 

 

2.1.1 Hydrological Indicators 

 

To assess the impact of climate change on water resources management and development, it was first 

necessary to select indicators that would provide key information about the performance of hydrological 

systems and water infrastructures in the near  and  distant future in areas that are under threat of climate 

change. Among others, Waggoner (Waggoner, 1990), Kirshen (Kirshen, 2005), and the United Nations 

World Water Assessment Program (UN/WWAP, (2003 and 2009) have proposed a set of such indicators 

that might be particularly helpful to policy makers and planners making decisions related to water 

resources investment and planning.  

 

Drawing on insights derived from this literature, indicators were chosen for this analysis with the intent of 

providing an understanding of the possible impacts of climate change on water resources for those 

involved with World Bank water resource development projects. The indicators chosen include the 

following: two GCM outputs, temperature and precipitation; two calculated meteorological variables, PET 

and CMI; and six hydrologic variables, MAR, basin yield, annual high flow (q10), annual low flow (q90), 

groundwater (baseflow), and reference crop water deficit. While temperature, precipitation, PET, and CMI 

are useful indicators of climatic and hydrological conditions, the focus of this analysis is on the six 

hydrological indicators: 

 

 MAR: the average annual runoff across years in a given period, for example, the 2030s. 

 Basin yield: the maximum sustainable reservoir releases within a basin.  

 Annual high flow (q10): the annual runoff that is exceeded by 10 percent of years in a given period, 

also referred to as the 10 percent exceedence flow. In a 10-year period, the q10 flow would be the 

second highest flow of the 10 available, which is exceeded only by the highest flow in that decade. 

Change in q10 is used as an indicator of flood risk. 

 Annual low flow (q90): the converse of annual high flow, this is the 90 percent exceedence flow, or 

the annual runoff that is exceeded by 90 percent of years in a designated period. For a 10-year 

period, this would correspond to the second lowest recorded flow. Change in annual low flow is used 

as an indicator of drought risk. 

 Groundwater (baseflow): the sustained flow in a river basin resulting from groundwater runoff. This 

indicator is used as a proxy for groundwater availability. 

 Reference crop water deficit: the crop water demand that exceeds available precipitation. Because 

it was not possible for this study to measure biophysical crop water demand, PET was used to 

represent the water demands of a typical perennial grassland. 

 

See Section 2.5 for more information on these indicators and the methods through which they were 

analyzed. 

 

2.1.2  Resolution and Scale 

 

Following the selections of appropriate indicators, a suitable scale and resolution for this analysis had to 

be established. In deciding on an appropriate scale and resolution, it is important to recognize that there 

is a trade-off between precision and accuracy, which Figure 2-2 visually represents. The diagram 

demonstrates that as resolution increases, so does uncertainty, which is due to the more detailed 
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information necessary to achieve this higher resolution. Similarly, a larger scale allows for a higher level 

of accuracy, but does not provide the precision needed for some analyses. In sum, there is price in 

accuracy for more precise information. Therefore, where precision is necessary, the additional uncertainty 

must be recognized and taken into account when assessing impacts. For this reason, the goal of an 

assessment—that is, what the analysis is trying to achieve and whom it is trying to inform—should 

ultimately drive the decision about relevant scale and resolution.  

Figure 2-2.  The cone of uncertainty in scale and resolution of modeling 

 

 

Source:  Authors’ representation of uncertainty in scale and resolution of modeling 

 

Given the desire to inform water resources planning and development at the regional and local level, the 

basin was easily identified as the appropriate scale for this analysis. The basins defined in this study vary 

significantly in size, ranging from approximately 2,500 km
2
, which is similar to a grid cell of 0.5  0.5 

degrees, to more than 62,500 km
2
, which is similar to a grid cell of 2.5  2.5 degrees. 

 

As with most water planning and management analyses—which often require a 0.5  0.5 degree grid 

resolution (approximately 50  50 km) or finer for project level analyses—a basin scale assessment 

requires a relatively fine resolution. Problematically, GCMs provide climate change projections at a low 

spatial resolution (typically in the range of a 2.5  2.5 degree grid). Therefore, it was necessary to match 

the lower resolution GCM outputs with the higher resolution basin scale. For reference, Table 2-1 

provides spatial resolutions for the 22 IPCC AR4 GCMs, and Table 2-2 shows typical areas of a 1 degree 

latitude  1 degree longitude area across a range of latitudes.  
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Table 2-1.  Spatial resolution of IPCC AR4 GCMs 

 

GENERAL CIRCULATION MODELS LAT LONG 

AREA AT 

40° 

LATITUDE 

(KM2) 
Bjerknes Centre for Climate Research, Bergen Climate Model 2.0 2.81 2.81   75,115 

Center for Climate Modeling and Analysis, Coupled GCM 3.1 3.75 3.75 133,538 

Center for Climate Modeling and Analysis, Coupled GCM 3.1.t63 2.81 2.81   75,115 

Centre National de Recherches Météorologiques, Coupled Model 
3 2.81 2.81   75,115 

Commonwealth Scientific and Industrial Research Organization, 
Mk 3.0 1.88 1.88   33,384 

Commonwealth Scientific and Industrial Research Organization, 
Mk 3.5 1.88 1.88   33,384 

Geophysical Fluid Dynamics Laboratory, Climate Model 2.0 2 2.5   47,480 

Geophysical Fluid Dynamics Laboratory, Climate Model 2.1 2 2.5   47,480 

Goddard Institute for Space Studies, Atmospheric Ocean Model 3 4 113,952 

Goddard Institute for Space Studies, ModelEH 3.91 5 185,792 

Goddard Institute for Space Studies, ModelER 3.91 5 185,792 

Institute of Atmospheric Physics, Climate Model System FGOALS 
G 1.0 3 2.81   80,123 

Institute for Numerical Mathematics, Climate Model 3.0 4 5 189,920 

Institut Pierre Simon Laplace, Climate Model 4 2.5 3.75   89,025 

Model for Interdisciplinary Research on Climate 3.2, High 
Resolution 1.13 1.13   12,018 

Model for Interdisciplinary Research on Climate 3.2, Medium 
Resolution 2.81 2.81   75,115 

Max Planck Institute for Meteorology, European Center Hamburg 
Model 5 1.88 1.88   33,384 

Meteorological Research Institute, Coupled General Circulation 
Model 2.3.2a 2.81 2.81   75,115 

National Center for Atmospheric Research, Community Climate 
System Model 3.0 1.41 1.41   18,779 

National Center for Atmospheric Research, Parallel Climate Model 2.81 2.81   75,115 

UK Met Office, Hadley Center Climate Model 3 2.47 3.75   87,806 

UK Met Office, Hadley Center Global Environmental Model 1 1.24 1.88   22,103 

Average 2.6 3.0   80,211 

Source: IPCC AR4 background material 

Table 2-2.  Coverage area of a 1-degree latitude  1-degree longitude 

 

LATITUDE 1˚ LONG (KM) 1˚ LAT (KM) 
AREA 

(KM2) 
  0 111 111 12,393 

40   85 111   9,496 

60   56 111   6,181 

 

There are a number of downscaling methods available for mapping the large-scale signals from GCMs 

(that is, at the scale of hundreds of kilometers) to a finer resolution (that is, at the scale of tens of 

kilometers). These include statistical downscaling, or the use of empirical relationships; dynamical 
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downscaling, or the use of regional climate models rather than global models; and spatial techniques, 

such as linear interpolation, krigging, spline fitting, and intelligent interpolation.
3
  

 

Selecting a downscaling method requires careful consideration. In addition to reproducing the 

fundamental uncertainties associated with GCMs, many downscaling techniques introduce added 

uncertainties and biases. Fundamentally, through increasing the detail of information, downscaling 

increases the uncertainties associated with this information, as the GCM outputs are manipulated below 

the scale at which the physics of the GCMs themselves are mathematically described. Some downscaling 

schemes, due to their algorithms, violate the balances of water and energy over the GCM scale. 

Additionally, dynamical and statistical downscaling techniques require extensive quantification of the 

sensitivities on the assumptions underpinning both the GCMs and the downscaling algorithms; this can 

result in the need for exhaustive numerical experimentation. Hence, time and costs rarely allow the use of 

more than a couple GCMs in dynamical and statistical downscaling exercises. Given these challenges, 

running multiple GCMs at a coarser resolution might provide more insight into the range of possible future 

outcomes than does a higher resolution run of a few GCMs.  

 

Essentially, there is no single best method for downscaling; rather, the most appropriate and effective 

method for a given analysis must strike a careful balance between resolution and confidence in the 

projections. For the reasons stated previously, dynamical and statistical downscaling techniques were not 

desirable for this analysis. Hence, a spatial technique was employed.  

 

The projections for the 56 GCM-SRES combinations were run at their native spatial grid scale (see Table 

2-1). The projected changes in temperature and precipitation for the 2030s and 2050s for each GCM-

SRES were then directly mapped onto a 0.5  0.5 degree grid. This grid was combined with a 

corresponding same-size grid of historical monthly precipitation and temperature data to generate 

absolute temperature and precipitation projections for each 0.5  0.5 degree cell. This approach captures 

the range of potential climate change impacts at a higher resolution without downscaling the GCMs 

themselves, thereby achieving a balance between precision and accuracy. This process is described in 

greater depth in Section 2.2. 

 

To allow for a basin-level analysis and to reduce some of the uncertainty associated with interpolating 

GCM outputs to a higher resolution, the 0.5  0.5 degree gridded temperature and precipitation data were 

then reaggregated to the basin scale. Basins range significantly in size, from the smallest catchments of 

less than one square kilometer to drainage areas for rivers such as the Nile or Amazon that are well over 

the typical grid scale of a GCM (that is, 2.5  2.5 degrees). To allow for reasonable accuracy, basin sizes 

were selected to be no smaller than the solution of available climatic data (0.5  0.5 degree); a total of 

8,413 basins in World Bank regions were analyzed.  

 

Basin scale aggregation was achieved using GIS software to overlay basin boundaries with the 0.5  0.5 

degree grids, and then aggregating cells based upon their weighted area in each basin. Using a section 

of India, Figure 2-3 shows the three scales relevant to this study: the 0.5  0.5 degree grid, the 2.5  2.5 

degree grid, and the basins. 

                                                      

3 Commonly considered a variation of downscaling, spatial techniques do not involve a downscaling algorithm. The majority 
of downscaling being done use a spatial technique type of method. 
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Figure 2-3.  Section of Indian subcontinent showing 0.5  0.5 degree grid scale, 2.5  2.5 degree grid 

scale, and basin boundaries 

 

Source: Model representation. Basin boundaries are USGS Hydro 1K level 4 

 

2.1.3 Climate Scenarios 

 

As mentioned previously, relying on outputs from a single or handful of GCMs is problematic for a variety 

of reasons. There are errors in every model and natural variability in any particular run, creating 

significant uncertainty. An estimate of the uncertainty due to natural variability can be produced through 

running a single model multiple times with different initial conditions. However, this does not address the 

uncertainties associated with the fundamental assumptions, model physics, and parameterization built 

into the model itself.  

 

Employing a group of GCMs rather than one individual GCM can help account for model biases and 

errors. Yet the use of multimodel ensembles raises its own questions, predominantly: how to capture the 

full range of results from model runs. 
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Using the mean of multiple models with the assumption that the mean is a good representation of all runs 

can lead to wrong conclusions, and therefore strong caution is advised when using this approach. Of 

particular concern, relying on a mean might mask extreme values. For example: a multimodel ensemble 

mean of near zero could signify that all models predict near-zero change; however, it could also be the 

result of two polar opposite outputs canceling each other out. This is demonstrated in Figure 2-4. In water 

management and planning, risk is typically associated with extremes, so failing to capture these extremes 

could be highly problematic. 

Figure 2-4.  Range of relative change from baseline for GCMs. Mean is shown in bold 

 

Source: (Giannini et al. 2008) 

 

An additional challenge associated with multimodel ensembles is that the variation in model outcomes 

might potentially be construed as noise. Fortunately, evidence indicates a certain amount of consistency 
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in some of the more significant outputs generated by multimodel ensembles, suggesting that—while one 

should not rely on a single model alone—each model run can potentially produce important information 

that should not be ignored. Often, the direction of change is consistent among the climate models, and 

the range of possible outcomes that they produce should be considered explicitly in assessments of 

potential future impacts. 

 

While filtering out any GCM scenarios that are implausible—or extremely unlikely—for the region of 

concern could improve the use of multiple models, it is difficult to unequivocally ascertain which scenarios 

should be excluded, and there are currently no definitive criteria for making this determination. 

Techniques that would determine which scenarios are most applicable to each region based upon 

probabilistic analysis are currently being developed; however, these are not yet available for practical 

use.  

 

Given these challenges and constraints, it was decided that this analysis would employ climate 

projections from the full range of available models for the B1, A1B, and A2 SRES scenarios (17, 22, and 

17 GCMs, respectively, for a total of 56 GCM-SRES combinations). These scenarios were chosen 

because they are generally in the middle range of the marker SRES scenarios identified by the IPCC, and 

are the most commonly used emissions scenarios for impact and adaptation assessments. Figure 2-5 

presents a range of SRES scenarios and their emissions outputs.
4
 

 

The three SRES scenarios used in this study follow: 

 B1: low-end emissions scenario. This scenario represents a world where population peaks in the 

middle of the 21
st
 century, economic structures rapidly move toward a service and information 

economy, and resource-efficient technologies are introduced with commensurate reductions in 

material intensity.  

 A1B: moderate emissions scenario. Part of the broader A1 family of scenarios, A1B population 

peaks mid-century, economic growth occurs rapidly, efficient technologies are introduced, and a mix 

of fossil and nonfossil fuels are adopted.  

 A2: high-end emissions scenario. Under A2, global population continually increases and economic 

growth is regional and slower than in other scenarios. 

 

The 22 GCMs that were run for each of the three selected SRES scenarios are displayed in Table 2-3.  

 

Each of these 56 GCM-SRES combinations was used to generate projections of temperature and 

precipitation for the 2030s and 2050s for all 8,413 basins. The process used to translate these 

temperature and precipitation projections into changes in hydrological indicators in each basin is 

explained further below. 

                                                      

4 There are a total of 40 SRES scenarios, organized into four scenario families (A1, A2, B1, and B2). Marker scenarios 
represent a given scenario family, although they are not considered to be any more likely to occur than the other scenarios. 
These marker scenarios include A1B, A2, B1, and B2, and two additional scenarios for the groups A1F1 and A1T. For 
further details, see (IPCC, 2009). 
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Figure 2-5.  Greenhouse gas (GHG) emissions and estimated global surface warming for SRES 

scenarios, 2000 to 2100 

 

Source: IPCC AR4 

 

Table 2-3.  Available combinations of IPCC GCMs and SRES scenarios B1, A1B, and A2 

 

GENERAL CIRCULATION MODELS 
COUNTRY 

OF ORIGIN 

SRES SCENARIO 

B1 A1B A2 
Bjerknes Centre for Climate Research, Bergen Climate Model 2.0 Norway    

Center for Climate Modeling and Analysis, Coupled GCM 3.1 Canada    

Center for Climate Modeling and Analysis, Coupled GCM 3.1.t63 Canada    

Centre National de Recherches Météorologiques, Coupled Model 3 France    

Commonwealth Scientific and Industrial Research Organization, Mk 3.0 Australia    

Commonwealth Scientific and Industrial Research Organization, Mk 3.5 Australia    

Geophysical Fluid Dynamics Laboratory, Climate Model 2.0 US    

Geophysical Fluid Dynamics Laboratory, Climate Model 2.1 US    

Goddard Institute for Space Studies, Atmospheric Ocean Model US    

Goddard Institute for Space Studies, ModelEH US    

Goddard Institute for Space Studies, ModelER US    

Institute of Atmospheric Physics, Climate Model System FGOALS G 1.0 China    

Institute for Numerical Mathematics, Climate Model 3.0 Russia    

Institut Pierre Simon Laplace, Climate Model 4 France    

Model for Interdisciplinary Research on Climate 3.2, High Resolution Japan    

Model for Interdisciplinary Research on Climate 3.2, Medium Resolution Japan    

Max Planck Institute for Meteorology, European Center Hamburg Model 5 Germany    

Meteorological Research Institute, Coupled General Circulation Model 2.3.2a Japan    

National Center for Atmospheric Research, Community Climate System 
Model 3.0 US    

National Center for Atmospheric Research, Parallel Climate Model US    

UK Met Office, Hadley Center Climate Model 3 UK    

UK Met Office, Hadley Center Global Environmental Model 1 UK    

Source: IPCC AR4 
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2.1.4 Hydrological Model Selection 

 

As mentioned previously, CLIRUN-II was the hydrologic model used in this study. While several global 

hydrologic models could have been used for this analysis, the results likely would not have differed 

significantly, as each of these models use similar governing equations. 

 

For this analysis, CLIRUN-II was calibrated and validated using a separate set of historical runoff, 

temperature, and precipitation data. The CLIRUN-II model and the process used to calibrate and validate 

it are discussed in Section 2.4 

 

2.2 Data Inputs and Processing 
 

PET projections were calculated through use of the Modified Hargreaves method (Allen et al. 1998, 

Droogers and Allen 2002) using four core inputs: baseline temperature, precipitation from historical data 

sets, and projected temperature and precipitation generated by the 56 GCM-SRES combinations. In 

conjunction with the other inputs, PET projections were then used to generate CMI and the reference 

crop water deficit.  

 

The core inputs and PET were inserted into CLIRUN-II to generate projections of future runoff, which was 

then used to calculate projected impacts on the six hydrological indicators. Here, we describe these 

baseline and projected data sets, along with the steps to process them into a form compatible with the 

PET and runoff models. 

 

2.2.1 Baseline Temperature and Precipitation Data 

 

To calculate future temperature and precipitation projections, which are critical inputs for CLIRUN-II, it 

was necessary to gather baseline precipitation and temperature data for 1961to 1999, the historical 

period used as a baseline in this study. This baseline climate data was taken from the University of East 

Anglia’s Climate Research Unit (CRU) Time Series (TS) 2.1 data set. Typically used by the World 

Meteorological Organization as the standard reference baseline for climate change impact studies, the 

CRU TS 2.1 data set provides a monthly time series of precipitation and temperature for 1901 to 2002 on 

a 0.5  0.5 degree grid. The mean temperature and precipitation for the world’s 8,413 basins between 

1961 and 1999, according to the CRU data set, are show in Figure 2-6. Additional information on 

construction, validation, and uncertainties of the CRU data set are provided in Appendix A. 
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Figure 2-6.  Mean annual temperature (top map, in degrees Celsius) and precipitation (bottom map, 

in millimeters) in the 8,413 basins within World Bank client countries, 1961 to 1999 

 

 

Source: CRU TS 2.1 data set 

 

2.2.2 Projections of Temperature and Precipitation under Climate Change  

 

As described previously, climate change projections for the timeframes of interest (that is, the 2030s and 

2050s) were derived from each of the 56 GCM-SRES scenarios. 

 

Archived outputs from the IPCC include modeled monthly baseline (1961 to 1999) and projected 

precipitation and temperature for each GCM-SRES combination. Importantly, a modeled baseline was 

used rather than the actual historical baseline to control for upward or downward biases in GCMs, thereby 

allowing for the most accurate representation of relative change. 

 

To effectively compare projected changes in temperature and precipitation across different GCMs with 

different modeled baselines, it is necessary to first translate the modeled baselines and projections 

provided by the IPCC into changes relative to the baseline. To do this, these modeled baseline and 

projected outputs were first averaged by month, so that within each grid cell, variable, and GCM-SRES 

combination, there were 12 mean monthly outputs for the 39-year baseline and 12 projected monthly 

projections for temperature and precipitation for each future decade of interest. The modeled baseline 

and projected temperature and precipitation outputs were then translated from the GCMs’ native 
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resolution into the 0.5  0.5 degree resolution (see Section 2.1.2 for details on this process). Changes in 

precipitation and temperature were generated using the delta method, whereby the mean monthly 

decadal values were converted to changes relative to the baseline by subtracting the modeled baseline 

from the projected values to produce delta temperature and precipitation: 

 

ΔP  Pprojected – Pbaseline 

ΔT  Tprojected – Tbaseline 

 

Where P represents precipitation and T represents temperature.
5
 

 

Finally, these relative changes were coupled with the CRU historical data set to generate absolute 

monthly projections of temperature and precipitation at the 0.5  0.5 degree resolution under each GCM-

SRES combination.
6
 

 

2.2.3 Converting Gridded Data to the Basin Scale 

 

To generate basin-level runoff, CLIRUN-II requires absolute temperature and precipitation projections for 

each basin. Therefore, it was necessary to process the absolute precipitation and temperature projections 

from the 0.5  0.5 degree resolution to the basin scale. 

 

To do this, GIS was used to overlay basin boundaries with the 0.5  0.5 degree grid of absolute 

temperatures and precipitations. Cells were then aggregated within basin boundaries based upon their 

weighted area in that basin. This overlay of scales is demonstrated in Figure 2-3. The result is a matrix of 

8,413 basin values for each of the 56 GCM-SRES combinations for baseline runoff and both baseline and 

projected precipitation and temperature. Figure 2-7 presents the 8,413 river basins. 

 

                                                      

5  The so called delta method has been widely applied in water planning studies. Typically, the delta method applies monthly 
changes in temperature and precipitation from a GCM to an observed set of station or gridded temperature and precipitation 
data that are inputs to a hydrologic model (Hamlet et al., 2010). 

6  Note that if the change in precipitation calculated for a particular grid cell, GCM, and month is negative and greater in 
absolute value than the observed historical value, then the projected precipitation value would be negative. For example, if 
modeled precipitation for a grid cell, month, and GCM for the 2030s is 50 mm and GCM-modeled baseline precipitation is 

100 mm, the delta precipitation would be 50 mm. If observed, or actual, precipitation is 40 mm in the baseline, then the 

resulting projected precipitation would be 10 mm [that is, 40 mm  (50 mm)]. In these instances, projected precipitation is 
set to 1 mm. 
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Figure 2-7.  Map of the 8,413 global river basins within World Bank client countries 

 
Source: Model representation. Catchments from USGS Hydro 1 K level 3 (Africa) and 4 (rest of the world) 

 

2.2.4 Baseline Basin Runoff 

 

In addition to requiring absolute precipitation and temperature inputs, CLIRUN-II also requires baseline 

natural runoff inputs for calibration. Rainfall runoff models simulate the relationship between precipitation 

(rain and snow) and natural, unmanaged runoff. As such, these models require natural runoff data to 

calibrate the simulated runoff outputs. Historical average monthly runoff was gathered from the University 

of New Hampshire (UNH) Global Runoff Data Center (Fekete et al., 2000, GRDC, 2007). This data set—

the UNH-GRDC Composite Runoff Fields V 1.0—is derived from observed discharge information through 

use a climate-driven water balanced model (gauge locations are shown in Figure 2-8). Through using 

combined runoff fields, the UNH-GRDC approach preserves the accuracy of the discharge measurements 

as well as the spatial and temporal distribution of simulated runoff, thereby providing the best estimate of 

terrestrial runoff over large domains. It employs a gridded river network at the 0.5  0.5 degree spatial 

resolution to represent riverine pathways and to link continental landmasses to oceans through river 

channels. The UNH-GRDC data set provides 12 monthly mean values and a MAR for more than 50,000 

global 0.5  0.5 degree grids, covering much of the global land area outside of the permanently ice-

covered areas such as Antarctica and much of Greenland.  
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Figure 2-8.  Locations of gauging stations used in the GRDC database  

 

Source: (GRDC, 2007) 

 

Similar to absolute temperature and precipitation projections, baseline runoff data had to be processed 

from the 0.5  0.5 scale to the basin scale; this was achieved through using GIS to overlay basin 

boundaries with the 0.5  0.5 degree grid of historical baseline runoff values. Cells were then aggregated 

within basin boundaries based upon their weighted area in that basin. The final outcome was 8,413 basin 

scale historical baseline runoff values. Additional information on construction, validation, and uncertainties 

of the UNH-GRDC data set are provided in Appendix A. 

 

2.3 Calculating Changes in PET under Climate Change 
 

Once projections of absolute temperature and precipitation under climate change and baseline runoff had 

been gathered for each basin, basin-level estimates of PET and CMI were made for each of 56 GCM-

SRES combinations. PET is a necessary input into CLIRUN-II and is also used to calculate CMI and 

reference crop water deficit, two of the outputs of this analysis. CMI is a measure of aridity; projected 

changes in CMI are included in the data portal to provide an understanding of the general changes in 

hydroclimatic conditions at the basin level due to climate change.  

 

2.3.1 Calculating Changes in PET 

 

Average annual evapotranspiration (ET) is a measure of the amount of water lost to the atmosphere from 

the surface of soils and plants through the combined processes of evaporation and transpiration (that is, 

water consumed by vegetation) during the typical year. By contrast, average annual PET is a calculated 

parameter that represents the amount of water lost through evaporation and transpiration (that is, water 

consumed by vegetation) during a typical year under the condition that sufficient water is available at all 

times. PET depends upon several variables, including temperature, humidity, solar radiation, and wind 

velocity. If adequate water is available, ET should be equal to PET. 
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As mentioned previously, PET is a necessary input into CLIRUN-II, as well as a factor used to calculate 

CMI and reference crop water deficit. In this study, the Modified Hargreaves method (Allen et al., 1998, 

Droogers and Allen, 2002) was used to calculate PET. Baseline basin-level PET was calculated based on 

historical precipitation and temperature data taken from the CRU data set, along with the latitude of the 

basin centroid which is used to estimate solar radiation. Projected absolute temperature and precipitation 

were used to calculate projected PET for each basin under all 56 GCM-SRES combinations. Because this 

analysis is concerned with changes due to climate change, the change between baseline and projected 

PET was then assessed. 

 

2.3.2 Calculating changes in the climate moisture index 

 

Once baseline and projected PET were calculated, these values were used to generate baseline and 

projected CMI for each basin under all 56 GCM scenarios.  

 

CMI, an indicator of aridity, is a function of both annual precipitation and average annual PET. If PET 

exceeds precipitation, the climate is considered dry. To the contrary, if precipitation is greater than PET, 

the climate is considered moist. Using P to represent precipitation, the equation for CMI is CMI  (P/PET) 

 1 when PET > P; and CMI  1  (PET/P) when P > PET. A CMI of 1 is very arid and a CMI of 1 is 

very humid. As such, CMI is a useful indicator of overall hydroclimatic conditions. 

 

Baseline basin-level CMI was calculated using calculated baseline PET and the CRU historical baseline 

data for precipitation. Projected basin-level CMI was calculated using projected PET and projected 

absolute precipitation for all 56 GCM-SRES scenarios. Baseline CMI and projected CMI were then used 

to assess the projected change in CMI for each basin under all 56 GCM scenarios. 

 

2.4 Modeling Changes in Global Runoff under Climate Change 
 

To model changes in runoff, this study employed CLIRUN-II: a two-layer, one-dimensional infiltration and 

runoff estimation tool that uses historic runoff as a means to estimate soil characteristics.
7
 This section 

provides an overview of CLIRUN-II and its inputs, outputs, and calibration process; a more detailed 

description of the model, the calibration and validation process, and uncertainties can be found in 

Appendix B.  

 

2.4.1 Background 

 

CLIRUN-II (Strzepek and Fant, 2010) is the latest model in a family of hydrologic models developed 

specifically for the analysis of the impact of climate change on runoff. Kaczmarek (Kaczmarek, 1993) 

presented the theoretical development for CLIRUN, a single-layer, lumped, watershed rainfall runoff 

model, which he applied to the Yellow River in China (Kaczmarek, 1998). Yates (Yates, 1996) expanded 

on the basic CLIRUN model by adding a snow-balance model and providing a suite of possible PET 

models; he then packaged the expanded CLIRUN model in a Water Balance (WatBal) model. WatBal has 

                                                      

7 Note that runoff estimates are available from the GCMs directly for some models. Within GCMs, runoff is modeled by the 
land surface component at a scale that varies from GCM to GCM. Validation of modeled runoff takes place at a continental 
or large-scale river basin level. Thus, at the scale of the catchments for this analysis, GCM runoffs can be unreliable. 
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been used on a wide variety of spatial scales from small and large watersheds to globally on a 0.5  0.5 

degree grid (Strzepek et al., 1999, Huber-Lee et al., 2005, Strzepek et al., 2005). 

 

While CLIRUN and WatBal were able to successfully model mean monthly and annual runoff, which is 

important for water supply studies, they did not accurately model the runoff distribution tails, which are 

representative of floods and droughts. Incorporating most of the features of WatBal and CLIRUN, 

CLIRUN-II, which operates at a monthly time-step, was developed specifically to address the issue of 

modeling extreme events at the monthly and annual level.
8
 CLIRUN-II has adopted a two-layer approach 

following the framework of the six-parameter (SIXPAR) hydrologic model (Gupta and Sorooshian, 1983, 

1985) and employs unique conditional parameter estimation procedures. 

 

2.4.2 Model Inputs 

 

CLIRUN-II requires inputs of monthly precipitation and temperature, mean range in daily temperature for 

monthly PET, and observed monthly runoff. The baseline climate variables and observed runoff are used 

for calibration, and both the baseline and projected climate variables are subsequently used for 

simulation, that is, generation of modeled runoff outputs. As described previously, the baseline and 

projected inputs for CLIRUN-II were synchronized at a 0.5  0.5 degree resolution, and then spatially 

aggregated using river basin boundaries in GIS. PET was estimated based on precipitation, temperature, 

temperature range, and latitude using the Modified Hargreaves approach, described in Section 2.3. The 

required input data along with the source and units are listed in Table 2-4.  

 

Table 2-4.  Required inputs for CLIRUN-II 

 

INPUT PARAMETER 
BASELINE/ 

PROJECTED 
UNIT SOURCE 

Precipitation 
Baseline 

mm/month 
CRU TS 2.1 

Projected CRU TS 2.1 and GCMs 

Temperature 
Baseline ˚C CRU TS 2.1 

Projected ˚C CRU TS 2.1 and GCMs 

Temperature Range Baseline ˚C CRU TS 2.1 

Observed Runoff Baseline mm/month UNH-GRDC 

Source: CLIRUN-II model documentation 

 

2.4.3 Model Structure 

 

CLIRUN-II models runoff as a lumped watershed with climate inputs and soil characteristics averaged 

over the watershed, simulating runoff at a gauged location at the mouth of the basin. The model reports 

surface runoff, subsurface runoff, baseflow, and total runoff, where total runoff is the sum of surface 

runoff, subsurface runoff, and baseflow. In this study, four of the hydrological indicators (MAR, q10, q90, 

                                                      

8 Given the availability of runoff data at the global scale, this study projects changes in the magnitude of annual low and high 
flow events at the basin scale only. Although CLIRUN-II is capable of evaluating changes at the monthly level, this would 
require a longer time series than is available through the GRDC. 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VFV-4DTKXWY-1&_user=918210&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_version=1&_urlVersion=0&_userid=918210&md5=79298aae3790807667273fe7a1df3330#bbib33
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and basin yield) rely on the total runoff output, and the groundwater indicator relies on the baseflow 

output.  

 

A schematic of the model is included in Figure 2-9. The figure shows the mass balance of water in the 

CLIRUN-II system. Water enters via precipitation and leaves via ET and runoff. The difference between 

inflow and outflow is reflected as change in storage in the soil or groundwater. Soil moisture is modeled 

as a two-layer system: a soil layer (upper layer) and a groundwater layer (lower layer). These two 

components correspond to a quick and a slow runoff response to effective precipitation (that is, 

precipitation plus snowmelt). Quick runoff is the portion of the effective precipitation that directly enters 

the stream system as surface runoff. Direct runoff is a function of the soil surface and is modeled 

differently for frozen soil and nonfrozen soil, which is determined by temperature. The remaining effective 

precipitation infiltrates into the soil layer and generates slow runoff. A nonlinear set of equations 

determines how much water leaves the soil as subsurface runoff, how much is percolated to the 

groundwater, and how much goes into soil storage. The subsurface runoff has a linear relation of soil 

water storage, and percolation has a nonlinear relationship of both soil and groundwater storage. 

Groundwater receives percolation from the soil layer and baseflow is generated as a linear function of 

groundwater storage. 

 

Figure 2-9.  Schematic of water flows in CLIRUN-II 

 

Source: Authors’ representation of water flows in CLIRUN-II 

 

2.4.4 Calibration  

 

The CLIRUN-II model was calibrated with data from the UNH-GRDC data set described in Section 2.2.4; 

through calibration, the squared deviation between the 12 monthly GRDC runoff values and the 12 
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monthly averaged CLIRUN-II model outputs from the 10-year simulation period are minimized. The 10-

year simulation period was chosen to best represent the decade used to generate the 12 months of 

GRDC runoff data. Although a longer simulation period could have been used to calibrate CLIRUN-II, the 

additional years would have been less coincident with the GRDC data to which the model was being 

calibrated. The following parameters are adjusted during the calibration process: 

 

 soil depth, 

 snowmelt temperature, 

 snow formation temperature. 

 surface runoff coefficient, 

 percolation coefficient, 

 subsurface runoff coefficient, and 

 canopy intercept. 

 

During the calibration process, the parameters are adjusted so that the modeled runoff values for 120 

months (that is, 10 years of monthly data) most closely match the mean modeled monthly runoff with the 

GRDC data. 

 

Once calibration was completed, the resulting modeled runoff was checked for any unacceptable 

variations from the UNH-GRDC runoff data, as well as for any unrealistic maximum or minimum runoff 

projections. 

 

Figure 2-10 shows the R
2 
for the CLIRUN-II calibration for all basins modeled. Most of the basins had a 

calibration R
2
 of above 0.8, indicating the model is doing a good job of reflecting the major sources of 

variation in basin scale runoff. However, there were a number of basins (northern and far eastern Africa, 

Central Asia, and southern South America) that had poor calibration (see Figure 2-11). From the maps, it 

appears that the poor calibrations tend to correspond with dry areas; accordingly, good calibrations tend 

to correspond with wetter areas.  

 

The difference in calibration can largely be attributed to errors in the data provided by the UNH-GRDC 

data set used for calibration: areas of poor calibration correlate to the areas where there are few to no 

gauge stations and, hence, a paucity of data (see Figure 2-8). A comparison of the performance of 

CLIRUN-II with GRDC inputs versus in-country data is provided in Appendix C. 
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Figure 2-10.  Calibration results (R2) for 8,413 basins using CLIRUN-II 

 
Source: Model results based on authors’ calculations 

 

Figure 2-11.  CLIRUN-II calibration results (R2) for Africa and East Asia  

 

  

Source: Model results based on authors’ calculations 

 

2.4.5 Outputs 

 

After calibration, CLIRUN-II is used to generate modeled monthly baseline and projected runoff in each of 

the 8,413 basins based on temperature and precipitation inputs from CRU and the GCMs. Importantly, 
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the baseline runoff being used to compare with runoff under climate change is not historically observed 

runoff; it is the modeled runoff generated through use of the CRU climate data set. UNH-GRDC runoff 

data is only used to calibrate the CLIRUN-II model for each basin.  

 

Once absolute modeled baseline runoff and projected runoff had been generated by CLIRUN-II for each 

basin under all GCM-SRES scenarios, these runoff values were used to calculate changes in the six 

hydrological indicators.
9
 

 

2.5 Calculating Changes in Hydrological Indicators under Climate Change 
 

While there are 10 indicators reported in this study (see Section 2.1), the focus of the analysis is on six 

hydrologic indicators: MAR, basin yield, annual high flow, annual low flow, groundwater (baseflow), and 

reference crop water deficit. Using calculated baseline and projected PET and the modeled baseline and 

projected runoff generated by CLIRUN-II, basin-level changes in these variables were analyzed for all 56 

GCM-SRES combinations. Figure 2-12 provides a diagrammatic representation of these indicators and 

their interactions with the hydrological cycle.  

 

                                                      

9 Each of the separate runoff values—surface runoff, subsurface runoff, baseflow, and total runoff—is directly output as a 
runoff depth per unit time (mm/month). However, some indicator calculations require runoff in volume per unit time, such as 
cubic meters per second (cms) or million cubic meters (MCM) per month. To convert runoff depth per unit time to volume per 
unit time, the depth per unit time value is multiplied by the area of each basin.   
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Figure 2-12.  Diagram of hydrological indicators 

 
Background image source: NASA 

 

Ultimately, the purpose of this assessment is to assist decision-makers and stakeholders in planning for 

climate risk to water resources and related infrastructure, and to inform decisions on appropriate levels of 

effort for further project-level studies. Table 2-5 presents the hydrological indicators that are most relevant 

to five different types of water projects: irrigation and drainage, large water supply and wastewater 

treatment (urban), small water supply and wastewater treatment (rural), flood protection, and river basin 

management and multipurpose infrastructure (supply water for multiple purposes).  
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Table 2-5.  Hydrological indicators and the most relevant water projects 

 

HYDROLOGICAL 

INDICATOR 
MOST RELEVANT WATER PROJECTS 

MAR 
 Irrigation and drainage. Relevant for systems that are 

dependent upon direct withdrawals from rivers. 

Annual low flow (q90) 

 Large-scale water supply and wastewater treatment 
(urban). These systems rely heavily on reliability of water 
supply, so reductions in the lowest annual flows might pose 
large risks. 

 Small-scale water supply and wastewater treatment (rural). 
Relevant for rural systems that depend upon minimum 
availability of stream flow for supplies. 

Annual high flow (q10) 
 Flood protection. If this indicator increases, then the 

likelihood of high flows and long-term floods will increase. 

Groundwater (baseflow) 
 Small-scale water supply and wastewater treatment (rural). 

Rural systems often rely on groundwater for water supplies. 

Basin yield 

 Irrigation and drainage. Important for irrigation systems that 
rely on reservoir releases. 

 Large-scale water supply and wastewater treatment 
(urban). Relevant for urban systems that rely on releases 
from reservoirs. 

 River basin management and multipurpose infrastructure. 
Basin yield is relevant to both single- and multipurpose 
reservoirs and other water resources infrastructure.  

Reference crop water deficit 
 Irrigation and drainage. Indicates potential changes in 

irrigation water deliveries needed for the project. 

Source: Authors’ assessment 

 

To provide an easily understandable and usable summary of impacts on the six hydrologic indicators, an 

exposure index was developed for each indicator. This exposure index classifies each indicator as 

subject to a low, medium, or high exposure to climate change and future variability based upon the 

findings of this analysis. A low exposure level indicates that there is little or no concern about the 

variable’s exposure to current or future climate variability and change, a medium exposure level signifies 

that there is some concern, and a high exposure level denotes that there is significant risk. Medium and 

high exposure levels indicate that further analysis is necessary. 

 

Low, medium, and high exposure levels were classified for each hydrological indicator based on the 

authors’ expert judgment, which draws upon 20 years of experience in climate change impact and 

adaptation analyses and work with a wide range of international water resource experts. Exposure levels 

and the values that they signify are explained below in Table 2-6.  
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Table 2-6.  Exposure level thresholds for each indicator 

 

EXPOSURE LEVEL 
CHANGE 

THRESHOLD 

Reference crop water deficit and q10 

Low < 5% 

Medium 5% to 15% 

High > 15% 

Groundwater and q90 

Low > 5% 

Medium 5% to 15% 

High < 15% 

MAR and basin yield 

High decrease < 15% 

Medium decrease 5% to 15% 

Low decrease 5% to 0% 

Low increase 0% to 5% 

Medium increase 5% to 15% 

High increase > 15% 

Source: Authors’s assessment 

 

The significance of the hydrological indicators and the methods through which they were analyzed are 

described in the next sections. 

 

2.5.1 MAR 

 

MAR, the average annual runoff over a period of interest, is an overall measure of the available surface 

water in a region. For this reason, MAR is a primary indicator used for water resource planning and 

development. 

 

As discussed in Section 2.4, monthly runoff values were produced by CLIRUN-II for both the 2030s and 

2050s. To calculate MAR for each decade, these values were summed across months and then averaged 

across the 10 years in each decadal period. Projected MAR values for all 56 GCM-SRES combinations 

were then compared with modeled baseline MAR values to determine the percent change in MAR for 

both the 2030s and 2050s under all climate scenarios in all basins, which were then used to classify each 

basin as facing low, medium, or high risk. 

 

It is important to note that MAR does not provide any indication of the seasonality of flows. For instance, 

an area can have an overall high MAR, but severely low flows during the growing season, therefore 

making it an arid region. Similarly, the seasonality of runoff can change from year to year even if mean 

annual runoff is unchanged. Given that MAR does not supply information about the seasonality of flows, it 

alone is not a sufficient indicator of the overall impact of climate change on hydrological systems. 

However, it does provide critical information about hydroclimatic changes that can be expected in basins. 
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2.5.2 Basin Yield 

 

Basin yield is a measure of the amount of water reliably available to a basin in an average year. Due to 

natural variability between seasons and years, much of the water resource that is available in a basin 

during a given year (that is, annual runoff) is lost if not stored. Reservoirs, by storing water from when it 

becomes available until it is needed, greatly increase the percentage of annual runoff that is reliably 

available for use. Therefore, basin yield is directly related to the amount of reservoir storage available. 

 

As an indicator, basin yield provides information about the mean runoff, minimum runoff, and the runoff 

variability. Basin yield is also indicative of a basin’s ability to absorb the impact of potential runoff 

variability resulting from climate change. As such, it is a very useful measure in analyzing the climate risk 

to water resources at the basin level. 

 

Water resource planners have developed the storage yield curve as a way to estimate basin yield as a 

function of reservoir storage in a basin. The storage yield curve is a time series of estimated annual or 

monthly basin-level flows that provides information regarding how much storage is needed to provide 

certain amounts of annual reliable yield, and the level of reliable yield that can be achieved for a given 

amount of storage. 

 

Figure 2-13 provides an example of a storage yield curve for the Nile River at Aswan. The maximum yield 

on the curve corresponds with the average annual runoff in the basin, while the lowest yield on the curve 

corresponds with the minimum flow in the time series. In a basin without any storage (that is, zero on the 

x-axis), it is assumed that the basin yield will be the lowest recorded annual flow. On the other hand, in a 

basin with excess storage, it is assumed that the basin yield will be the MAR. 

Figure 2-13.  Storage yield curve for the Nile River at Aswan  

 

Source: Authors’ calculations based on available data on Aswan and the river Nile 

 

The shape of the storage yield curve is a function of the variability of a basin’s runoff, both within and 

among years. A steep curve reflects low variability; a flatter curve is indicative of higher variability. In other 
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words, a basin with highly variable runoff requires more storage than does a less variable basin to 

achieve the same basin yield. Climate change has the potential to alter not only the average annual runoff 

in a basin but also the annual runoff variability, thereby potentially affecting the shape of a basin’s storage 

yield curve. Figure 2-14 shows how a change in annual runoff might translate into a decrease in the 

maximum basin yield for a basin, as well as the increase in storage required to maintain a constant basin 

yield. 

 

Using baseline and projected annual runoff and low-flow values, baseline and projected storage yield 

curves were created for every basin for all 56 GCM-SRES combinations. Absent information on the 

reservoir storage available in each basin, this analysis assumes that existing storage provides 60 percent 

of baseline MAR, which defines YBase in Figure 2-14, and therefore also KBase.
10

 Next, the new basin yield 

under climate change (YCC in the figure) was calculated using the new storage yield curve. The baseline 

and climate change basin yield values were then compared to determine the percent change in each 

basin’s yield under climate change. These projected changes were used to categorize each basin as 

facing low, medium, or high risk due to change in basin yield under each of the 56 GCM-SRES 

combinations. 

Figure 2-14.  Impact of climate change on a hypothetical storage yield curve  

 

Source: Illustration by authors 

                                                      

10 Sixty percent of baseline MAR was selected as an estimate of basin yield based on the environmental flows needed to 
maintain ecosystem conditions. In the world’s river basins, between 20 and 50 percent of MAR is required to maintain 
riparian ecosystems in fair condition; these requirements are 40 percent in basins that have relatively stable flows (for 
example, Amazon and Congo), and closer to 30 percent in basins with more variable flows (Smakhtin, 2008). We assume 
that an average of 40 percent of MAR is needed to support ecosystems in each basin annually, leaving 60 percent of MAR 
for storage yield, which we assume is fully used each year. 
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2.5.3 Annual Low Flow (q90)  

 

Annual runoff and basin yield provide valuable information about the average conditions in a given basin. 

However, key hydrologic impacts on society and economic development are often the result of extreme 

events—for example, floods and droughts—rather than average conditions. Therefore, indicators that 

represent these extreme events are necessary for an analysis of climate change’s risk to water resource 

management and development. 

 

Following Alavian et al. (Alavian et al., 2009), this analysis uses q90 (annual low flow) as an indicator of 

drought. The q90 flow value refers to the flow that is exceeded 90 percent of the time, which means that 

there is a 10 percent chance in a given time period of a flow lower than this value. A decrease in the q90 

value signifies an increase in the likelihood of a given low flow and therefore is an indication of increased 

drought risk. 

 

For each of the basins, projected q90 runoff values for each of the 56 GCM-SRES combinations were 

compared to modeled baseline q90 runoff values to assess relative change. The relative changes were 

then used to categorize each basin as facing a low, medium, or high level of risk from changes in drought 

due to climate change. 

 

It is important to note that q90 flows can represent quite different flows depending on a basin’s 

hydrological regime. For example, in a dry basin, the q90 flow might be considerably lower than in a wet 

basin. Additionally, some basins are more prone to droughts than others and will be more sensitive to 

increased drought as a result of decreases in q90. While these complexities were not explicitly addressed 

in this analysis, it is important to keep them in mind when analyzing the possible impacts of climate 

change in drought risk for any particular basin. 

 

2.5.4 Annual High Flow (q10) 

 

In this analysis, annual high flow (q10) was used as an indicator of flood risk. In contrast to annual low 

flow (q90), q10 represents the flow value that is exceeded 10 percent of the time, which means that there 

is a 90 percent chance in each time period of a flow lower than this. As q10 increases, so does the 

likelihood of high flows; therefore, an increase in q10 corresponds with an increase in flood risk. 

 

Annual high flow is an indicator of long-term and large-scale flooding events that can be identified based 

on monthly and annual runoff data. This indicator does not provide information on the frequency, duration, 

or magnitude of short-term floods that are based on weekly events, or of flash floods that are based on 

daily events. 

 

Projected q10 runoff values for each of the 56 GCM-SRES scenarios were compared to the modeled 

baseline q10 runoff values for all basins to evaluate the relative change. The relative changes in q10 from 

historical values were used to provide an indication of the projected change in flooding. These values, in 

turn, were used to categorize each basin as facing a low, medium, or high risk from change in flooding 

due to climate change.  
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Similarly to q90, q10 can represent significantly different flows depending on a basin’s hydrological 

regime, for example, in a dry basin, the q10 flow might be considerably lower than in a wet basin. Some 

basins might be more prone to flooding than others, making them more sensitive to even moderate 

increases in q10 flows. As with q90, these complexities were not explicitly addressed in this study, but 

should be considered in assessing the increase in risk due to climate change for any particular basin. 

 

2.5.5 Groundwater (Baseflow) 

 

Groundwater plays an integral role in reservoir storage, streamflow, and runoff. Additionally, many 

regions of the world are directly reliant on groundwater-fed wells for water supply and small-scale 

irrigation. For these reasons, it is important to provide an indicator of the possible impact of climate 

change on local groundwater resources.  

 

Although groundwater is often considered separate from surface water, the two water sources are 

integrally connected (see USGS, 1998). An aquifer can be described as having an appetite for water. As 

groundwater supply decreases, the aquifer’s appetite increases, causing every water supply that shares a 

boundary with the aquifer to lose water. This interaction between groundwater and surface water is 

difficult to observe and to measure, making it difficult to accurately estimate. Since modeling the global 

groundwater system is beyond the scope of this analysis, baseflow—a screening level proxy indicator 

(Freeze and Cherry, 1979)—was used to provide an indication of the groundwater available in each basin  

 

For each basin and GCM-SRES scenario, the 39-year time series of projected runoff flows was analyzed 

and a mean monthly hydrograph was developed (see Figure 2-15). The 12 monthly values were sorted 

for each year and a minimum annual flow was determined. For example, in Figure 2-15, the minimum 

annual flow for September was at approximately 7 CMS. 

Figure 2-15.  Example of a basin’s mean monthly hydrograph 

 

Source: Example illustration by authors 

 Average Hydrograph 

0 

20 
40 

60 
80 

100 
120 

140 
160 

180 

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 

Month 

 

C
u

b
ic

 M
et

er
 p

er
 S

ec
o
n
d
 



Climate Variability and Change: A Basin Scale Indicator Approach to Understanding the Risk to Water 

Resources Development and Management 

 

34 

 

The contribution of groundwater to annual runoff was assumed to be 12 times the lowest monthly flow for 

each year.
11

 It is assumed that the groundwater contribution to runoff can be modeled as a linear 

reservoir. That is 

 

Baseflow(t)  α  GS(t) 

 

where α  groundwater – surface water interaction coefficient, and GS(t)  groundwater storage in month 

t. 

 

This approach allows for an understanding of the future direction of groundwater availability and whether 

it should be of concern in a given region. 

 

Once annual baseflow projections had been developed for every basin under each GCM-SRES 

combination, these were compared to modeled baseline baseflow to analyze relative change. Projected 

relative change was used to categorize each basin as facing low, medium, or high risk due to change in 

groundwater availability. 

 

2.5.6 Reference Crop Water Deficit 

 

Both rain-fed and irrigated agriculture are key aspects of economic development in many countries. 

Because agricultural systems could be considerably impacted by climate change, an indicator of the 

impact of climate change on water availability for crops was needed. 

 

Detailed crop modeling and analysis of agricultural water use at the global basin scale was far beyond the 

scope of this work. However, simplified methods can provide an understanding of reference crop water 

deficit at a broader scale. The Water Deficit Index (WDI) is one such method  employed for climate 

change analyses at the regional and local levels (Woli et al., 2008), and was used in this analysis.  

 

WDI  Σ (CWR – Precip)t   if CWRt – Precipt > 0, else 0 

 

where CWR   Kc(t)  PET(t), and Kc  crop factor. 

 

Kc, the crop factor, translates PET into actual crop water demand; the WDI assumes a reference 

perennial grass crop factor, Kc, which has a value of one. The PET data used in the equation was 

consistent with what is used in the CLIRUN-II model (see Section 2.4). The calculation of the CWR was 

performed at the 0.5  0.5 degree gridded scale, and then aggregated to the basin level.  

 

For each basin, baseline WDI was compared with projected WDI for each GCM scenario to determine 

relative change. Given that WDI was used to represent reference crop water deficit, changes in WDI were 

used to categorize each basin as facing low, medium, or high risk from changes in reference crop water 

deficit. 

 

                                                      

11 This approach relies on the constant discharge method for baseflow separation. 
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While reference crop water deficit—as represented by WDI—does not describe the actual agricultural 

water demand experienced in any basin, it does offer a broad perspective on agricultural performance. 

Therefore, changes in this indicator provide useful information about the potential impacts of climate 

change on both rainfed and irrigated agriculture for planners and policy-makers. 

 

2.6 Uncertainty 
 

In climate change impact analyses, there are significant uncertainties stemming from a range of sources. 

Sources of uncertainty include, but are not limited to: 

 

 Limitation of assumptions, model physics, and parameterization of the global circulation models  

 Unpredictability of future development pathways and the resulting scenarios for emissions of 

greenhouse gases, land use changes, and other factors influencing climate change  

 Fundamental uncertainties in climate change’s impact on the hydrologic cycle and water resources 

and the modeling hereof 

 Limitations of the selected hydrologic model 

 Data limitations with regard to baseline climate inputs and baseline runoff inputs. 

 

The initial three sources are typical—and to a large extent unavoidable. This chapter will concentrate on 

the two last bullet points, which are more specific to this study.  

 

However, it is important to note that for decision makers, it is the total uncertainty in predicting future 

climate and its impacts that matter. Some of this has been captured by the proposed methodology above 

(for example the variability in results from alternative combinations of GCMs and emission scenarios). 

Another part can be addressed by using decision tools that place appropriate emphasis on uncertainty 

and promote suitably flexible investment and planning decisions.  

 

2.6.1 Uncertainty Due to Global Circulation Models and Emission Scenarios 

 

Sources of uncertainty directly related to climate change projections include the inherent variability of the 

climate system, unpredictability of future emissions, and the limitations of the fundamental assumptions, 

model physics, and parameterization built into models themselves (Bates et al. 2008). The overall level of 

uncertainty associated with climate projections increases with the length of the time horizon, and 

projections of precipitation tend to be less certain than temperature projections.  

 

2.6.2  Fundamental Uncertainty in Forecasting Climate Change Impacts on Hydrology 

 

Where hydrological models, such as CLIRUN-II, are used to project impacts on water resources, 

uncertainties arise from a variety of additional sources, including the scale mismatch between climate 

projections and hydrological systems and related issues caused by downscaling techniques (discussed in 

Section 2.1), as well as fundamental uncertainties in climate change’s impact on the hydrologic cycle and 

water resources.  
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Beyond these typical—and largely unavoidable—sources of uncertainty, uncertainty in this analysis was 

also caused by the limitations of the CLIRUN-II model and poor data sets. 

 

2.6.3  Uncertainty in Rainfall Runoff Models 

 

The inputs used for global climate change studies generally represent our best guess of physical, 

geographic, and hydrologic properties. Due to the nature of climate research, these inputs tend to be 

estimated values averaged over large areas (for example, GCMs have an average resolution of 2.6  3.0 

degrees). As a result, rainfall runoff models used for global climate change studies typically tend to be 

relatively simple, and often require a minimal amount of input to reduce both the uncertainty associated 

with inputs and the possibility of compounding errors. As a result, there are several reasons for 

uncertainty directly related to these rainfall runoff models, including the following:  

 

 Rainfall runoff models make simplifying assumptions. For example, CLIRUN-II is a simple rainfall 

runoff model in which there are two soil layers that allow water to move with restrictions into, 

between, and out of the bottom of the soil profile. CLIRUN-II assumes that each of the two soil layers 

has uniform properties at a given time. However, in reality, soil properties vary to some extent through 

each of the soil layers. CLIRUN-II also assumes uniform soil and weather properties within each 

basin, while in reality these parameters often vary; for example, the northeast section of the basin 

could be different from the southwest section. To produce one soil and weather value representing 

the entire basin, CLIRUN-II takes the average of these properties across the basin. These 

simplifications, while necessary in global runoff studies, impact the accuracy of CLIRUN-II and other 

rainfall runoff models, and therefore are a cause of uncertainty in this analysis. 

 

 Calibration results might not well represent the physical parameters. In global climate change 

studies, a calibration scheme is required in rainfall runoff models to account for all of the unknown 

basin characteristics (soil layer thickness, ground cover properties, and so on). The calibration 

process estimates physical basin properties based on the observed runoff used in the analysis, and it 

is possible that the calibration scheme’s estimations do not always well represent reality. For 

example, the ground cover properties could be exaggerated to account for inaccurately observed 

runoff data, or one basin property could be exaggerated to account for another exaggerated basin 

property (for example, layer thickness could account for ground cover properties). Calibration would 

presumably be more reliable if some or all of these physical basin properties were physically 

measured, but this alternative would be very expensive and time consuming. These issues 

associated with rainfall runoff model calibration result in some level of uncertainty in runoff outputs. 

 Observed runoff is rarely naturalized flow (climate induced flow). Hydrologists generally make 

the distinction between “naturalized” and “gauged” runoff. Naturalized runoff is the runoff caused by 

the weather (precipitation, temperature, and so on) and the earth’s surface (topology, soils, ground 

cover, and so on), without consideration of anthropological impacts. Gauged runoff, on the other 

hand, accounts for anthropological impact such as dams, reservoirs, and ground cover changes. 

CLIRUN-II was built to model naturalized runoff, meaning that the equations built into the model do 

not include the effects of civilization. Although the UNH-GRDC runoff data is based on a naturalized 

flow model, in cases where the UNH-GRDC results were corrected using observed streamflow, the 

annual runoff data could represent gauged runoff instead of naturalized runoff. Where UNH-GRDC 
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runoff data is based on gauged flows, CLIRUN-II is actually calibrated to human-influenced flow 

rather than naturalized flow, therefore introducing a level of uncertainty in results. 

 

 Extreme runoff events may be under-represented. If the runoff and historical climate data sets 

under-represent extreme events, rainfall runoff models will under-represent extreme runoff events as 

well. Because both the UNH-GRDC data set and the CRU TS 2.1 data set have the tendency to 

include too few extreme events (runoff and weather, respectively), there is a good chance that 

extreme runoff events are under-represented in the CLIRUN-II results.  

 Limitations to scope of CLIRUN-II. In this analysis, there are a number of topics that were not taken 

into account when running CLIRUN-II. For example, water system management aspects (for 

example, reservoirs, routing, and extractions for different demands) were not included in the analysis. 

While simplistic groundwater was included, detailed groundwater modeling was not. Also, while 

CLIRUN-II does have a snowmelt component, it does not include glacier modeling and therefore does 

not account for this aspect of hydrological systems. These limitations reduce the certainty of the 

outputs. 

 

The authors believe that runoff is well represented by the CLIRUN-II model at the scale of analysis 

undertaken, and that the  previously mentioned simplifications do not impact the overall validity of results, 

with the important caveat that, as explained in Section 1 and addressed later, that data should not be 

used at the project level. 

 

Additional detail on the uncertainties in the CLIRUN-II model and the data inputs used in this study are 

explored in Appendices A, B, and C. 

 

2.6.4  Uncertainty in the Geographic Extent of River Basins 

 

This study relies on the Hydro1k data set from the US Geological Survey (USGS) for geographic 

delineation of basin boundaries. To estimate these boundaries, the USGS used 1  1 km resolution digital 

elevation models  to evaluate the spatial extent of river drainages based on topography. Although the 

authors believe that Hydro1k is the best source available on the spatial extent of the world’s river basins, 

to the extent that there are inaccuracies in the underlying digital elevation models, or there are differences 

between the local understanding of basin boundaries and the boundaries calculated by the USGS, the 

basin boundaries in this study might be inaccurate. At the scale of analysis undertaken, these 

inaccuracies might cause small shifts in the geographic distribution of modeled runoff, but are unlikely to 

have a significant impact on the indicator results. 

 

2.6.5  Uncertainty Due to CRU Baseline Climate Inputs 

 

The CRU TS 2.1 data set, which was used to provide climatic baseline inputs for this analysis, 

incorporates weather data from gauging stations all over the globe. However, station data is not always 

available for every time and place, an issue that tends to be more common in developing countries where 

station coverage is often poor. When and where weather records are not available, the CRU team uses 

an interpolation method to fill in missing data. Depending on the characteristics of a particular region, this 

interpolation might be a more or less accurate depiction of real historical weather. Interpolation accuracy 
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is of particular concern in areas with significant variations in elevation. The questionable accuracy of the 

original station data, in itself, is a source of notable uncertainty. 

 

Additionally, in the CRU interpolation method, the 1961 to 1999 seasonal mean is used to fill in missing 

data. Hence, the CRU data set is biased toward seasonal means. While the assumption that the seasonal 

mean is appropriate for filling in missing data is scientifically sound, this is problematic for water resource 

and natural disaster planning, where information on extreme (that is, less likely) events is generally more 

important than what happens on average (that is, the seasonal mean). 

 

This potential bias affects the accuracy of CLIRUN-II results, and adds particular uncertainty to the use of 

these results to predict changes in extreme events such as flooding and drought (see Sections 2.5.3 and 

2.5.4). Given this bias in baseline inputs, the risk of extreme events is likely to be underrepresented in this 

study’s results. Accuracy of the CRU data set is described in further detail in Appendix A. 

 

 

2.6.6  Uncertainty Due to UNH-GRDC Baseline Runoff Inputs 

 

As the UNH-GRDC data was used to calibrate the CLIRUN-II model, its accuracy is a primary 

determinant of the overall accuracy of the calibration results and, therefore, the accuracy of the CLIRUN-

II runoff outputs. Potential sources of uncertainty in the UNH-GRDC data set include the following: 

 Scope and data availability issues with UNH-GRDC. There are four main issues with the UNH-

GRDC calibration runoff data that add to uncertainty in the analysis: (1) there are large areas 

(especially in dry regions) that do not have gauge data, (2) the time period of available gauge data 

varies by station, therefore the resulting monthly discharge regimes are not fully consistent, (3) the 

historical climate data used in the Water Balance Model (WBM) of the UNH-GRDC data set is not the 

same that was used in the CLIRUN-II model analysis, and (4) the data set is only provided for 12 

average monthly values, not for a full time series.  

 Input data inaccurate in some areas. The UNH-GRDC team generated gridded runoff data for the 

globe based on a composite of available station data and modeled runoff using the WBM. Therefore, 

the accuracy of the UNH-GRDC runoff data is contingent upon the accuracy of both the WBM and its 

data sources. For basic soil information, the WBM relies on the UN Food and Agriculture 

Organization (FAO) Soil Map of the World, which contains estimates of soil properties all over the 

globe. These estimates are based on soil samples collected and interpolated for each region. There 

is significant room for errors in the soil samples, the methods used to interpolate them, and the way in 

which this information was used by the WBM. Additionally, any errors in the WMB’s 0.5  0.5 degree 

gridded representation of river networks could cause runoff to be associated with the wrong river 

network, leading to miscalculations of annual runoff at the basin level.  

 Annual rather than monthly error adjustment. The annual rather than monthly error adjustment of 

UNH-GRDC data set is another source of potential uncertainty. In a given basin, all of the modeled 

runoff in each grid cell is summed to produce a total runoff at the mouth of the basin. The modeled 

runoff total was then ‘corrected’, i.e., adjusted, to match actual gauged runoff. This adjustment was 

done annually instead of seasonally, and adjustment coefficients typically ranged from approximately 

0.01 to 100. By making the correction annually, the UNH-GRDC team maintains the seasonality from 

the weather data (from CRU TS 2.1) instead of using the seasonality from the gauged runoff. In many 
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cases, the seasonality from the weather data does not match gauged runoff seasonality; this affects 

CLIRUN-II results, which are calibrated to the UNH-GRDC results, and therefore is a source of 

uncertainty in this study.  

 Observed runoff data missing over large areas. In areas where observed runoff was not available, 

the UNH-GRDC data set only represents WBM results, due to the fact that observed streamflow was 

not available to constrain the modeled results. Therefore, in these cases, any errors in WBM outputs 

would not have been “corrected”. This basically means that in situations where the gauged runoff was 

not available, CLIRUN-II is calibrated to the WBM-modeled runoff alone. The fact that the adjustment 

coefficients described previously range from approximately 0.01 to 100 implies that the WBM 

miscalculated runoff in some areas by a factor of 100 (either 100 times greater or 100 times smaller). 

Hence, in the places where gauged runoff was not available, there is a significant room for error in 

UNH-GRDC data, which leads to possible uncertainty in the CLIRUN-II results.  

 

Possible errors in the UNH-GRDC data set and their potential effect on the CLIRUN-II results are covered 

in greater depth in Appendix A. Note that the UNH-GRDC gridded data is the best currently available 

source of naturalized global runoff data. Despite the uncertainties mentioned previously, the authors 

believe that this data set provides a reasonable representation of global runoff at the scale of analysis 

undertaken. 

 

2.6.7  Results are Not Intended for Use at the Project or Design Level 

 

Because of the uncertainties, the indicator results can be used on a screening or planning level, but these 

results are not intended to be used at a project or design level. Users are advised to conduct more 

detailed studies before any major decisions are made based on interpretations of the results presented 

here.  
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3. ILLUSTRATIVE RESULTS: UGANDA AS AN EXAMPLE 

To provide an illustration of how the results of this study, available on the World Bank Climate Portal, 

might be used and interpreted, this section uses projections for the river basins of Uganda as an 

example.
12

 Results for Uganda’s basins are presented in two formats: as maps showing differences in 

severity of impacts across basins for the six hydrological indicators, and  as box and whisker diagrams 

showing the range of projected impacts across the 56 GCM-SRES combinations for the full set of 10 

indicators. The spatial results presented on the maps provide a perspective on how the six hydrological 

indicators are anticipated to vary across basins and time, as well across the climate scenarios; as such, 

they provide a snapshot of the risks to water resources systems projected by the climate models. The box 

and whisker diagrams, which show the statistical distribution of the results across climate scenarios, 

provide a complementary perspective on the variability of the projected changes in hydrological indicators 

under climate change. Given that highly uncertain future outcomes will call for different solutions than 

more certain outcomes, this information is a critical piece in forward-looking water resources planning. 

 

A note of caution: in using the results presented here and on the World Bank Climate Portal, it is 

important to keep in mind that these results are based on projections of current climate models, and 

therefore are limited by the state of the science and are subject to uncertainty, as discussed in Section 

2.6 and throughout this document. As indicated in Box 3-1, these limitations should to be considered 

when using and interpreting the results from this analysis. 

 

Box 3-1.  Using results on the World Bank Climate Portal 

The indicator results are not intended to be used at the project level. Although the 

results can be used on a basin and annual level, users are advised to conduct more 

detailed studies before any major decisions are made based on interpretations of the 

results presented here. 

 

 

 

  

                                                      

12 As mentioned in the introduction, the results of this analysis are available on the World Bank Climate Portal, a Web-based 
interface that makes this information easily accessible to World Bank clients, planners, and policy-makers. Climate Portal 
users can access graphic presentations of the severity (that is, low, medium, high) of change that is projected for all studied 
indicators across basins and regions of interest for the 2030s and 2050s, as well as tabular representations of this 
information and GIS files for each basin. The information available on the Climate Portal and its navigation is further 
discussed in Appendix D. 
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3.1 Maps of Hydrological Indicators across Basins 
 

Using Uganda’s river basins as an example, this section provides an illustration of how projected changes 

in the six hydrological indicators might be used. For each hydrological indicator, a set of maps reflecting 

the severity of changes for each basin are provided for dry, middle, and wet climate scenarios; these 

scenarios are based upon minimum, median, and maximum aggregate runoff for each basin across the 

22 GCMs run for the A1B SRES scenario, which is the moderate emissions scenario used in this 

analysis. The dry, middle, and wet GCMs in the 2030s and 2050s for Uganda are presented in Table 3-1. 

This representation of results allows for comparison of projected impacts across basins, temporal scale, 

and climate scenarios.  

 

Table 3-1.  Dry, middle, and wet scenarios for Uganda basins in the 2030s and 2050s for the A1B 

SRES scenario 

DECADE DRY SCENARIO 

MIDDLE 

SCENARIO WET SCENARIO 
2030s giss_model_er gfdl_cm2_1 cccma_cgm3_1 

2050s giss_model_er inmcm3_0 cccma_cgcm3_1_t63 

Source: Authors’ assessment 

 

Note that the illustrations in the figures presented in this chapter provide an example of changes in 

indicators at the country scale, and as such, show only the portions of Uganda’s basins within the country 

boundaries.  

 

3.1.1  MAR 

 

The projected percent change of MAR for Uganda’s basins is portrayed in Figure 3-1 for both the 2030s 

and 2050s under the dry, middle, and wet scenarios. As the maps show, within each climate scenario, the 

results indicate relatively consistent impacts spatially and temporally; that is, exposure levels across the 

basins and decades are similar. However, among climate scenarios, the results suggest highly variable 

impacts, ranging from significant increases to significant decreases in MAR. 

 

In light of these results, it might be concluded that water resource decision-making in Uganda needs to 

take into account the fact that there is a large amount of uncertainty about future MAR. Accordingly, water 

resource planning should build in the flexibility to deal with either significant increases or decreases in 

runoff.  
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Figure 3-1.  Change in mean annual runoff in Uganda’s basins from the baseline to 2030 and 2050 

under dry, middle, and wet scenarios  

 

 

Source: Based on Authors’ calculations 

 

3.1.2 Basin Yield 

 

The projected percent change of basin yield for Uganda’s basins is portrayed in Figure 3-2 for both the 

2030s and 2050s under the dry, middle, and wet scenarios. The results depicted in the maps indicate 

that, in general, the central part of the country will experience low negative impact under most climate 

scenarios. The impact on basin yield in the northern and southern regions of Uganda is much less 

certain. This suggests that, while the central part of the nation might not need to significantly alter their 

available storage, the northern and southern regions should conduct more detailed analyses to evaluate 

their ability to handle runoff variability. 
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Figure 3-2.  Change in basin yield in Uganda’s basins from the baseline to 2030 and 2050 under dry, 

middle, and wet scenarios  

 

 

Source: Based on authors’ calculations 

 

3.1.3  Annual High Flow (q10) 

 

The projected percent change in annual high flow (q10) for Uganda’s basins is portrayed in Figure 3-3 for 

both the 2030s and 2050s under the dry, middle, and wet scenarios. Q10, as explained previously, can 

be used to represent flood risk; hence, changes in q10 provide some indication of future changes in 

likelihood of flooding. 

 

The projection results indicate that, as would be assumed, the risk of flooding increases significantly as 

the climate projections become wetter. While the results suggest that flood risk is unlikely to change 

significantly in the northwest regions before 2030, by 2050, all of Uganda is projected to experience a 

highly increased risk of flooding events under the wet scenario. These results suggest a high level of 

variability but an overall indication of potentially significant impacts, and so indicate that more in-depth 

analysis of flooding risk is merited. 
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Figure 3-3.  Change in annual high flow (q10) in Uganda’s basins from the baseline to 2030 and 2050 

under dry, middle, and wet scenarios  

 

 

Source: Based on authors’ calculations 

 

3.1.4  Annual Low Flow (q90)  

 

The projected percent change in annual low flow (q90) for Uganda’s basins is portrayed in Figure 3-4 for 

both the 2030s and 2050s under the dry, middle, and wet scenarios. As discussed previously, q90 

provides an indication of drought risk, and therefore might offer an idea of the potential impact of future 

drought under climate change scenarios. 

 

As the maps show, the results suggest  little change in low flow under middle and wet scenarios. 

However, this should not be assumed to mean that the increased risk from drought is low. Even though 

the dry scenario is the only scenario projecting high impacts, it represents an equally valid potential future 

consequence of climate change. Decisions and planning efforts that could be impacted by monthly 

droughts must take into consideration the potential of significantly increased drought risk in the future, 

particularly in the 2050s and beyond. 
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Figure 3-4.  Change in annual low flow (q90) in Uganda’s basins from the baseline to 2030 and 2050 

under dry, middle, and wet scenarios  

 

 

Source: Based on authors’ calculations 

 

 

3.1.5 Groundwater (Baseflow) 

 

The projected percent change in groundwater (baseflow) for Uganda’s basins is portrayed in Figure 3-5 

for both the 2030s and 2050s under the dry, middle, and wet scenarios. 

 

The results show relatively consistent effects across basins under each scenario; however, there is 

considerable variability between the dry scenario and the wet and middle scenarios, with the potential of 

severe impacts under dry conditions. Because groundwater availability particularly affects groundwater-

using rural populations and small-scale irrigation, these results indicate a need for particular attention to 

communities and systems that depend on groundwater for their livelihoods and well-being. 
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Figure 3-5.  Change in groundwater (baseflow) in Uganda’s basins from the baseline to 2030 and 2050 

under dry, middle, and wet scenarios  

 

 

Source: Based on authors’ calculations 

 

3.1.6 Reference Crop Water Deficit  

 

The projected percent change in reference crop water deficit for Uganda’s basins is portrayed in Figure 3-

6 for both the 2030s and 2050s under the dry, middle, and wet scenarios. 

 

The results show considerable variability in projected changes in reference crop water deficit. In areas 

that are projected to potentially experience significant increases, additional inquiry into the ability to 

increase irrigation supply is merited. This is particularly important in the southwest portion of Uganda, 

which is most likely to experience a noticeable increase in reference crop water deficit. Given the 

potential for increased demand throughout Uganda, these results should be considered when evaluating 

future agriculture and irrigation development plans throughout the country. 
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Figure 3-6.  Change in reference crop water deficit in Uganda’s basins from the baseline to 2030 and 

2050 under dry, middle, and wet scenarios  

 

 

Source: Based on authors’ calculations 

 

3.2 Box and Whisker Plots of Hydrological Indicators across GCMs 
 

The maps discussed previously in this chapter provide a meaningful overview of results, and are 

particularly useful for temporal comparisons within and spatial comparisons among basins. By contrast, 

box and whisker plots illustrate the variation that occurs within results due to uncertainties in GCM model 

structure and emission scenarios. For this reason, box and whisker plots are a useful representation of 

the variation in indicator results across climate scenarios, and give a better indication of the full 

distribution of GCM results. 

 

Figure 3-7 shows two sets of box and whisker plots showing the variation in results for all indicators in the 

2030s and the 2050s are provided for the aggregated basins in Uganda. Projections for each indicator 

(listed across the x-axis) are provided for each SRES scenario (also listed across the x-axis). The 

variation represented by the box and whiskers for each indicator-SRES combination reflects the range of 

projection results associated with each GCM run for each SRES scenario.  
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Figure 3-7.  Box and whisker plots of indicators for Uganda from the baseline to the 2030s (top) and 

2050s (bottom), across climate scenarios  

 

 

 

 

Source: Based on authors’ calculations 
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In the box and whisker plots of Figure 3-7, results for MAR, q10 (denoted by 10 percent), q90 (denoted by 

90 percent), baseflow (denoted by gndwtr.), basin yield (denoted by stor.), and reference crop water 

deficit (denoted by irr def), PET, and precipitation (denoted by precip) are shown as percent changes. 

Results for temperature (denoted by temp) and CMI are shown as absolute changes; in order to allow 

CMI to be displayed on the same scale as temperature, absolute changes in CMI are multiplied by 10. 

These box and whisker plots are formatted the same way as plots on the World Bank Climate Portal. 

 

For each indicator’s box and whisker plot, the middle line represents the mean projected parameter, and 

the top and bottom of the open rectangle (the box) represent the 25
th
 and 75

th
 percentiles of the 

projections, respectively. The dashed lines extending above and below the boxes (the whiskers) show the 

range of extreme values of the projected results, and the cross-hairs show the model outliers. Outliers are 

retained in the plots because they provide some indication of the worst case scenarios for indicators. 

 

Box and whisker plots of indicators were created for each of the 8,413 basins. More information about the 

box plots available on the World Bank Climate Portal is provided in Appendix D. 

 

Based on the projections of the parameters presented here, we can conclude that water resource 

planning and management need to be designed in a manner that takes into account large uncertainty 

about both the magnitude and, to some extent, the direction of future change. For this reason, water 

resource decisions need to allow for increased flexibility, which could open up an entirely new paradigm 

for dealing with infrastructure investments and water management frameworks. 

 

3.3 Final Comment on Using the Hydrological Indicators Data 
 

Anyone who uses the data produced through this analysis should be aware of the limitations and 

uncertainties of the results. While highly valuable for planning, these results should not be used on a 

project scale, for reasons discussed previously. Additionally, users should be aware that the extreme 

event estimations from this analysis are less certain than results for other indicators. However, despite 

these limitations, the results from this analysis provide a highly helpful indication of basin scale impacts 

that, in conjunction with an understanding of large-scale impacts (that is, country and regional mean 

impacts), should be considered by World Bank Team Leaders and decision-makers when making water 

resource planning, management, and investment decisions. 
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ANNEXES 
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ANNEX A: CRU AND GRDC DATA SETS: DESCRIPTION, 

CONSTRUCTION, UNCERTAINTIES, AND VALIDATION13 

A.1 CRU Description14 
 

The Climate Research Unit (CRU) of the University of East Anglia has developed an open source, global 

land surface time series and historical record of nine weather parameters at a resolution of 0.5 by 0.5 

degree. The data set has undergone many revisions, the first of which spans from 1901 to 1995 and is 

titled CRU TS 1.0. The version used in this analysis is the most recent revision and is titled CRU TS 2.1 

and spans from 1901 to 2002 (1,224 monthly values for each variable and each 0.5 degree cell). Mean 

temperature, minimum temperature, maximum temperature, diurnal temperature range, precipitation, wet 

day frequency, frost day frequency, vapor pressure, and cloud cover are all included in the data set. The 

variables used in this analysis are precipitation, mean temperature, and diurnal temperature range. 

 

A.1.1 Data Used for Construction 

 

The CRU TS data sets were constructed using a network of meteorological observing stations. According 

to the CRU TS 2.1 documentation, the station data is preferred to satellite data for two reasons: “satellite 

information only becomes available after 1970, and satellite measures conditions through the depth of the 

atmosphere rather than at the surface (for example, Susskind et al. 1997)” (Mitchell and Jones, 2005). 

However, building a global database from station data is not trivial. Previous attempts to build a suitable 

station database include: the Global Historical Climatology Network (GHCN) (Vose et al., 1992; Peterson 

and Vose, 1997), the Jones temperature database (Jones, 1994, Jones and Moberg, 2003), and the 

Hulme precipitation database (Eischeid et al., 1991, Hulme et al., 1998). These three databases serve as 

the primary source for the CRU TS 2.1 precipitation and temperature time series. Additional data sets 

were used when available to fill in some of the spatial and temporal holes. Each collection of weather 

variables was absorbed into the database in the order shown in Table A-1. The order was determined to 

give priority to the sources that are considered to be more reliable. The station locations used to develop 

this database are shown for precipitation (Figure A-1) and temperature (Figure A-2). The station coverage 

for various periods of time are shown for precipitation (Figure A-3) and temperature (Figure A-4). The total 

number of stations is shown as N1 in Figures A-1 and A-2, and N in Figures A-3 and A-4 (New et al., 

2000). There is a significant decrease in the number of stations used in 1995 from the number of stations 

used in 1981 (evident in Figures A-3 and A-4). This phenomenon is counterintuitive because one 

assumes that there should be more available stations in more recent years. This assumption is most likely 

accurate, especially in developed countries. The CRU team documents and explains the decrease in 

station coverage (which starts in the early 90s) as follows:  

 

The recent reduction in station numbers is primarily in areas with good or reasonable 

station coverage. However, the spatial coverage of stations reporting diurnal temperature 

                                                      

13 Excerpted from (Strzepek and Fant IV, 2010). 
14 The following is primarily a summary from two sources: (Mitchell and Jones, 2005 and 
http://www.cru.uea.ac.uk/~timm/grid/CRU_TS_2_1.html. For a more detailed discussion please refer to these sources. 

http://www.cru.uea.ac.uk/~timm/grid/CRU_TS_2_1.html
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ranges shows a more serious reduction in the 1990s. This, in due course, should be 

alleviated by the inclusion of mean monthly maximum and minimum temperature in the 

post-1995 monthly CLIMAT reports and by updated data sets for the former USSR and 

China, once they are included in the CRU data set. (New et al., 2000) 

 

So the current data set (CRU TS 2.1) was most likely constructed using more stations (resulting in better 

spatial accuracy), but time series maps were not shown in the recent reports (for example, Mitchell and 

Jones 2005). Figures A-1 through A-4 were taken from New et al., which was published before the CRU 

TS 2.1 data set was available. For the CRU TS 2.1 data set, more stations were used from 1990 to 1995 

than shown in Figures A-3 and A-4. But the other station maps shown in these two Figures (1901, 

1921,…, 1981) are accurate for the CRU TS 2.1 data set. 

 

Table A-1.  The sources of station records from which the database was constructed 

Label Reference Information  Period 
Jones  Jones and Moberg, 2003  tmp 1701–2002  

Hulme Mike Hulme, personal communication  pre 1697–2001  

GHCN v2 Peterson et al., 1998c  tmp, dtr, pre  1702–2001  

Mark New  New et al., 2000  tmp, dtr, vap, cld, spc  1701–1999  

Hahn Hahn and Warren, 1999  tmp, vap, cld  1971–1996  

MCDW William Angel, personal 
communication  

tmp, pre, vap, spc, wet  1990–2002  

CLIMAT UK Met Office, personal 
communication 

tmp, dtr, pre, vap, spc, 
wet 

1994–2002 

Note: The climate variables to which the sources contribute are temperature (tmp), DTR (dtr), precipitation (pre), vapor pressure 
(vap), cloud cover (cld), sunshine duration (spc), and wet days (wet). The dtr includes information from individual records of daily 
temperature minima (tmn) and maxima (tmx). 

Source: (Table 1 in Mitchell and Jones, 2005) 

Figure A-1. Precipitation stations used for the CRU TS interpolation  

 
Source: (New et al. 2000) 
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Figure A-2.  Temperature stations used for the CRU TS interpolation 

 
Source: (New et al. 2000) 

 

Figure A-3. Precipitation coverage during different time periods. The shaded areas represent the half-

degree coverage  

 
Source: (New et al. 2000) 
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Figure A-4..  Temperature coverage over various time periods. The shaded areas represent the half-

degree coverage 

 
Source: (New et al. 2000) 

 

A.1.2 Construction Method 

 

To expand the weather station data into a land surface, global, time-series database, three major tasks 

remained: verify the quality of the observed data (homogeneity with climate variations and related 

observed weather), complete the stations with missing temporal data, and aggregate or expand the 

station data to half-degree grids. 

 

In order to accomplish the first task, the team at the CRU used an iterative method, where the first pass 

was used to identify all potential inhomogeneities, and the subsequent passes were used to remove any 

data that was considered untrustworthy. The goal of the iterative process included the following steps 

(Mitchell and Jones, 2005): 

 

1. New station records must be checked to ensure that they present a homogeneous record in which 

variations are caused only by variations in climate. 

2. Information from additional sources must be checked against the existing database, to guard 

against unnecessary duplication. 

3. Where new information is available for an existing station, it must be ensured that the different 

sources provide consistent records. 

4. The number of stations useful for constructing grids must be maximized. 

 

The iterative method used is a modified version of the GHCN method of homogenization. The GHCN 

method is well documented and was developed for global data sets similar to CRU TS 2.0 (Peterson and 

Easterling, 1994, Easterling and Peterson, 1995). In this method, a subsection of the candidate and a 
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neighboring reference time series are correlated using a residual sum of squares statistic to check for 

abrupt or gradual discontinuities. First, a reference time series that is considered homogeneous must be 

determined, which is difficult because all of the stations in this series are candidates for inhomogeneity. 

Hence, the iterative procedure is used where the first pass checks for obvious untrustworthy data, the 

second pass assumes a set of reference stations for checking, the third assumes another set of reference 

stations, and so on, so that all of the stations were eventually checked with the neighboring stations. 

 

The station data was then anomalized to a specific reference period, meaning that the changes were 

approximated based on an assumed time period of average weather. 

 

 , , ,i m y i mX X X  
                              (EQ 1, difference anomalies) 
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                                     (EQ 2, relative anomalies) 

 

Where X  is the anomaly; Xi,m,y is the weather variable for station i, month m, and year y; 
,i mX  is the 

weather variable mean over the reference period for station i and month m. For temperature and diurnal 

temperature range, the difference anomaly was used (Equation 1), while the relative anomaly (Equation 

2) was used for precipitation. This was repeated for each value in the available time series, each station, 

and each of the three weather variables used for the runoff analysis. In this case the reference period was 

1961 to 1990. This reference period was chosen because it was late enough to insure the availability of 

sufficient monitoring stations and early enough to represent a historical mean. This reference period was 

also chosen because the authors (meaning Mitchell and Jones) have participated in many studies 

involving the mean weather over this period, specifically the CRU CL series (which includes CRU CL 

1.0/2.0, where CL represents global average climatology).  

 

These anomalies were then used to interpolate temporally and to a half-degree resolution. To avoid poor 

interpolation, the anomalies were used instead of the absolute values. For example, if a portion of a 

weather station located in the mountains is unavailable, the missing values might be estimated by 

interpolating between three valley stations. If the absolute values were used for interpolation, the mean 

values are not preserved (for example, weather stations at higher elevations tend to have colder 

temperatures than neighboring stations at lower elevations, and so on). Alternatively, when the anomalies 

are used for interpolation, the mean values are better preserved. 

 

The interpolation of station data onto a uniform grid has been the focus of much research, resulting in 

many proposed methods. The CRU team used thin-plate splines to interpolate the station data to a 

surface at a half-degree resolution, as described by Hutchinson (Hutchinson, 1995). The thin-plate spline 

method attempts to reduce the roughness of the surface using a generalized cross validation statistic. 

The generalized cross validation is an iterative validation scheme where the data from one station is 

removed from the data set, and the surface is interpolated without the data from the said station. Then the 

relative difference between the observed station value and the interpolated value at the location of the 

station is used as the estimated error. More details on the interpolation method used by the CRU team 

are given by New et al. (New et al., 1999, 2000).  
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In areas where there are large gaps between the stations for a given period of time, dummy stations were 

added to relax the anomaly to zero (that is, the 1961 to 1990 mean). For this reason the CRU TS data set 

claims to be space-optimized rather than time-optimized (Mitchell, 2010). After the interpolation, the 

gridded anomalies were adjusted so that the mean at each grid was zero for the reference period (1961 

to 1990). The anomalies were then combined with the reference period mean global climatology (CRU CL 

1.0) to obtain grids of absolute values. The gridded absolute values were constrained to lie within the 

range of the physically possible by applying minima and maxima to select weather variables. Precipitation 

was constrained to be greater than 0 mm, without a maximum; diurnal temperature range was 

constrained to be greater than 0.1 degree Celsius, without a maximum; and temperature was not 

constrained. 

 

A.1.3 Uncertainties, Cautions, and Validation 

 

All of the typical uncertainties associated with large, interpolated weather data sets would still apply to 

CRU TS 2.1. The data set was developed by irregularly spaced weather stations, which measure the 

weather variables at a point. There is no guarantee that the point data truly represents two-dimensional 

surface data. Distance between stations is important, but also the weather variance within that distance. 

Two stations can be close but the weather between them can be drastically different, especially when the 

stations have different elevations. 

 

There are also no easy ways to monitor all of the weather stations. In the CRU TS documentation 

(Mitchell and Jones, 2005) the team discusses some station measurement errors caused by the 

relocation of weather stations in mountainous areas, most likely moving the station to a place with a 

different elevation. The CRU team hoped to catch many of the measurement errors like this by checking 

and correcting the inhomogeneities (discussed in Section A.2.2). But all of these possible errors are, for 

the most part, unavoidable when developing a global data set at a relatively high resolution. 

 

Another caveat, expressed in detail by Tim Mitchell on his Tyndall website (Mitchell, 2010), is the use of 

the CRU TS 2.1 data set as a local time series. As discussed in the previous section, some of the missing 

sections of the station data, both spatial and temporal, were relaxed to the 1961 to 1990 mean. For this 

reason, the CRU team states that CRU TS 2.1 “is our best estimate of the spatial pattern of climate at 

each moment in time” (Mitchell, 2010). This method could have removed some of the undocumented 

extreme events, especially for values before 1961; although, using the mean value is a much safer 

estimate, as opposed to extrapolating the weather from distant stations, which could result in much 

greater quantitative errors. 

 

The CRU TS data set is a well-accepted global weather data set among climatologists and hydrologists. 

The CRU team has undertaken a great deal of quality assessments and found the resulting data set to be 

as accurate as possible, given the coarse resolution and available data. A few third party groups have 

attempted to validate the CRU TS data set by comparing it with station data that was not available to the 

CRU team when the data set was constructed. One such example is “Comparison of Products from ERA-

40, NCEP-2, and CRU with Station Data for Summer Precipitation of China” by Tianbao and Congbin 

(Tianbao and Congbin, 2006). In this paper, the authors find that the CRU TS data set shows the best 

agreement with the station data over China when compared to the other two data sets. Meigh and Fry 

(Meigh and Fry, 2004) find that the CRU TS data set agrees with station data in southern Africa, and 
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Mayotte (Mayotte, 2009) found that CRU TS agrees with station data over Ethiopia. In all three cases, the 

studies used station data that was not available to the CRU TS team. 

 

A.2 UNH-GRDC Runoff Data Description15 

 
Selected gauging stations from the GRDC and the Simulated Topological Network (STN-30) developed at 

UNH were coregistered to develop a set of estimated runoff values (This data set will be referred to as 

UNH-GRDC). The UNH-GRDC runoff database, used in this analysis, is an estimate of the historic mean 

monthly runoff at a half-degree resolution. This database was constructed with a strong emphasis on the 

observed data from gauging stations as opposed to simulated runoff. The argument for emphasizing the 

measured runoff is that measured weather variables, primarily precipitation, often have more error than 

measured runoff. And simulated runoff is based on these measured weather variables averaged over 

large areas. On the other hand, measured runoff does not always represent climate-driven, raw runoff 

patterns. This incongruity is primarily a result of human induced alterations to the land surface, for 

example, reservoirs and urban development. So the UNH-GRDC team has developed a combination of 

observed and simulated runoff to provide the best estimate of terrestrial runoff averages for the globe. 

 

A.2.1 Data Used for Construction 

 

The STN-30, at a half-degree resolution, helped to arrange the land cells (also half-degree) into a river 

network. This allows the team to delineate the boundaries of the contributing basins. These boundaries 

are important for understanding the runoff values both measured and simulated. 

 

GRDC has collected and maintained global runoff records of two types. The first type is a collection of 

198 gauging stations at the mouths of rivers that drain into the ocean, including measured runoff, 

percentile graphs, and flow accumulation curves. The second data set contains 1,348 gauging stations 

with tributaries larger than 2,500 km
2
 and records longer than 12 years. The UNH team has determined 

that the STN-30 can resolve catchments with an area greater than 25,000 km
2
 reliably, between 10,000 

and 25,000 km
2
 fairly well, but below 10,000 km

2
 the accuracy is considered untrustworthy. The primary 

reason for the caution with smaller catchments is a result of the half-degree resolution of the STN-30. For 

this reason, the UNH-GRDC team selected 861 (of the 1,348) candidate stations, all with a catchment 

area greater than 10,000 km
2
. Figure A-5 shows the locations of these candidate stations. 

 

                                                      

15 The following is primarily a summary of other work (Fekete, Vörösmarty, and Grabs, 2000). Please refer to this source for 

more details. 
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Figure A-5.  GRDC selected discharge gauging stations  

 

Source: Fekete et al. 1999 

 

A WBM was used to develop a better estimate of climate-driven runoff at a half-degree resolution. The 

water balance is typically based on a simple soil moisture budget, first given by Thornthwaite 

(Thornthwaite, 1948) as 
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where R is the rate of surplus water (runoff and/or recharge) in millimeters/day, P is the rate of  

precipitation in millimeters/day, E is the rate of evapotranspiration in millimeters/day, and 
W

t




 is the 

change in soil moisture in millimeters/day. Vörösmarty et al. (Vörösmarty et al., 2000a) developed the 

WBM based on Equation 3, to be used at a continental and global scale. 
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following method 
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where E0 is PET, Pa is precipitation available for soil recharge, Wc is the soil’s water holding capacity, W 

is the soil moisture, and g(W) is a unit-less soil drying function given as  

 

 

 

1 exp

( )
1

c

W
W

g W
e 





   
 
                                                          (EQ 5) 

 

Where  is an empirical constant. Evaporation is defined as 
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For PET, Hamon’s temperature-based function was used (Hamon, 1963). The climate variables used in 

the WBM were air temperature, precipitation, wind speed, cloud coverage, and vapor pressure deficit 

from the CRU for the period 1986 to 1995 (New 1999, 2000). The land surface was classified using the 

Terrestrial Ecosystem Model’s (Melillo, 1993) potential vegetation overlaid with cultivated areas from 

Olson’s land-use classification (ISLSCP, 2005). The FAO/UNESCO (FAO/UNESCO, 1986) soil data bank 

was used to estimate the soil type and texture. Land cover and soil types were combined to estimate the 

rooting depth and water holding capacity, using the method described in Vörösmarty et al. (Vörösmarty et 

al., 2000b). Since the WBM and the selected GRDC gauging stations all report runoff at a monthly time-

scale, the UNH-GRDC team decided to consider travel time delays negligible. The proof of this is 

described in more detail in Fekete et al. (Fekete et al., 2000).  

 

A.2.2 Construction Method 

 

The GRDC observed runoff and the runoff simulated by the WBM were combined using a set of 

correction coefficients calculated on an annual basis. The observed runoff in between two stations 

(interstation runoff) was estimated as follows: 
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Where 
oiR  is the estimated mean annual observed interstation runoff at interstation region I, 

oiQ  is the 

mean annual interstation discharge, and Asi is the interstation area. Using a weighted average, the mean 

water balance runoff in the interstation region i is: 
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Where Rwi is the mean annual water balance runoff, Rwbm is the local annual water balance runoff, and Asi 

is still the interstation area. The correction coefficient (Rc) then becomes 
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Where sie  is the error (or the correction coefficient) of the WBM. This term was constrained to be greater 

than or equal to 0.5 and less than or equal to 2.0. The combined mean annual runoff, using the method 

just described, is show in Figure A-6. This error term sie  calculated as a long-term average, is plotted for 

the globe in Figure A-7.  
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Therefore, the runoff data was distributed over the globe at a half-degree resolution using the WBM 

results, constrained to preserve the observed discharge from the gauge stations (Fekete et al., 2002). 

 

Figure A-6.  UNH-GRDC composite mean annual runoff for the globe 

 

 

Source: Fekete et al. 1999 

 

Figure A-7.  WBM runoff correction coefficients 

 

 

Source: Fekete et al. 1999 
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A.2.3 Uncertainties, Cautions, and Validation 

 

The UNH-GRDC data set is the result of a complex process involving climate data, runoff data, topology 

data, and a runoff model—all of which can introduce error. Errors in the climate data, CRU TS (discussed 

in the previous section), can have significant adverse effects on the modeled runoff. This caveat is 

especially true in regions where observed runoff data is sparse, because the gauge station data was used 

to correct the modeled runoff. Also, although the observed runoff data tends to be more accurately 

measured than observed weather data, river discharge measurements also contain errors of 5 to 10 

percent (Hageman and Dumenil, 1998; Rantz, 1982). Furthermore, the gridded river network (STN-30) 

carries with it errors of its own. These errors are much more difficult to quantify because they deal with 

the linkages of the tributaries and the overall structure of the runoff model and data. The main caution 

linked with this data set is that the topology was averaged over a half-degree by half-degree grid, which is 

a considerably large area to assume a constant slope. But all of these possible errors introduced by the 

errors in the global data used cannot be corrected with an obvious solution, because the data sets used 

are arguably the best available (ISLSCP, 2005). 

 

The correction coefficients used to constrain the modeled runoff were calculated and applied on an 

annual basis, while the results were given on a monthly basis. The use of annual correction coefficients 

was necessary because of the seasonal storage introduced by nature and human impact, but still could 

cause some inherent errors. Using annual coefficients assumes that the seasonal variation was captured 

correctly by the WBM. Another limitation is the range forced on to the correction coefficient (0.5–2.0). Any 

errors inherent in the WBM are magnified when the WBM results and observed runoff relationship 

produces a correction coefficient outside this range. This range also seems to have been chosen 

arbitrarily without an in depth look into the cause of extreme values (ISLSCP, 2005). 

 

Developing a global runoff data set is difficult, and all of these uncertainties mentioned are not to discredit 

the UNH-GRDC data set. Most of the possible errors mentioned are unavoidable, and come with the 

development of a global data set. It is the opinion of the authors of this World Bank Water paper that the 

UNH-GRDC data set is the best global runoff data set available.  

 

A.2.4 Comparison of Basin Boundaries between UNH-GRDC Data and Alavian et al. 

 

The main difference between the UNH-GRDC basin boundaries and the basin boundaries used in the 

study by Alavian et al. (Alavian et al., 2009) is the resolution. The UNH-GRDC group used a half-degree 

topology (STN-30), restricting the size at which basin boundaries can be accurately depicted. Therefore, 

the size of the UNH-GRDC basins is generally much greater than the basins used in the study by Alavian 

et al., especially in areas further inland.  

 

Another major difference is the method used to consider one basin “complete” and separate from other 

basins. The UNH-GRDC group chose basin boundaries based on where the station data was available, 

and not based on physical parameters. By contrast, the basin boundaries used in the Alavian et al.’s 

report were calculated based on the Hydro1k level 3 and level 4 catchments (level 4 was used for all of 

the bank regions, except Africa, where level 3 was used). To provide an example, Figure A-8 shows the 

two basin delineations over Africa, Figure A-9 shows a close-up of the same figure over the Zambezi 

basin, and Figure A-10 shows a zoomed-in portion of the Zambezi with Will Farmer’s Unique Identifiers 
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labeled. In Figure A-10, the basins are labeled as such: “UniqueIdentifier_BankRegion: D – UNH-

GRDCbasin.” For example, if the Unique Identifier is “G5866,” the region is Africa (“AFR”), and the UNH-

GRDC basin is the Zambezi, then the label shown on the map would be “G5866_AFR: D – Zambezi.”  

 

Figure A-8.  UNH-GRDC basin boundaries (green) and the Hydro1k level 3 basins (brown) over Africa 

 
Source: Authors’ analysis using combined USGS Hydro 1k Level 3 data with GRDC-UNH basin boundaries 
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Figure A-9.  UNH-GRDC basin boundaries (green) and the Hydro1k level 3 (part of Southern Africa) 

 
Source: Authors’ analysis using USGS Hydro 1k Level 3 data with GRDC-UNH basin boundaries 

 

Figure A-10. UNH-GRDC basin boundaries (green) and the Hydro1k level 3 basins (brown) zoomed in 

to show the Unique Identifier labels (as an example) 

 

 
Source: Authors’ analysis: combined USGS Hydro 1k Level 3 data with GRDC-UNH basin boundaries 
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ANNEX B: OVERVIEW OF THE CLIRUN-II RAINFALL RUNOFF MODEL 

CLIRUN-II is the latest model in a family of hydrologic models developed specifically for the analysis of 

the impact of climate change on runoff. Kaczmarek (Kaczmarek, 1993) presents the theoretical 

development for a single-layer lumped watershed rainfall runoff model CLIRUN. In other work Kaczmarek 

(Kaczmarek, 1998) presents the application of CLIRUN to the Yellow River in China. 

 

Yates (Yates, 1996) expanded on the basic CLIRUN by adding a snow-balance model and providing a 

suite of possible PET models and packaged it in a tool called WatBal. WatBal has been used on a wide 

variety of spatial scales from small to large watersheds and globally on a 0.5  0.5 degree grid (Strzepek 

et al., 1999, Huber-Lee et al., 2005, Strzepek et al., 2005). 

 

CLIRUN-II (Strzepek et al., 2008) is the latest in the Kaczmarek School of hydrologic models. It 

incorporates most of the features of WatBal and CLIRUN but specifically  addresses extreme events at 

the annual level, modeling low and high flows. CLIRUN and WatBal did well in modeling mean monthly 

and annual runoff, which is important for water supply studies, but did not model accurately the tails of the 

runoff distribution (floods and droughts). 

 

CLIRUN-II has adopted a two-layer approach following the framework of the SIXPAR hydrologic model 

(Gupta and Sorooshian, 1983, 1985) and using a unique conditional parameter estimation procedure. In 

the following section a brief description of the components of the model will be presented. 

 

CLIRUN-II models runoff as a lumped watershed with climate inputs and soil characteristics averaged 

over the watershed simulating runoff at a gauged location at the mouth of the basin. CLIRUN-II can run 

on a daily or monthly time step.  

 

The snow accumulation and melt model used in this study is based on concepts frequently used in 

monthly WBMs (McCabe and Wolock, 1999). Inputs to the model are monthly temperature and 

precipitation. Snowmelt is added to any monthly precipitation to form effective precipitation available for 

either infiltration or direct runoff.  

 

B.1 Structure 

 
Figure B-1 is a schematic of the water flows of CLIRUN-II. The figure shows the mass balance of water in 

the CLIRUN-II system. Water enters via precipitation and leaves via ET and runoff. The difference 

between inflow and outflow is reflected as change in storage in the soil or groundwater. 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VFV-4DTKXWY-1&_user=918210&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_version=1&_urlVersion=0&_userid=918210&md5=79298aae3790807667273fe7a1df3330#bbib33
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Figure B-1.  Schematic of water flows in CLIRUN-II 

 

Source: Authors’ representation of water flows in CLIRUN-II 

 

Soil moisture is modeled as a two-layer system with soil (upper) and groundwater (lower) layers. These 

two components correspond to a quick and a slow runoff response to effective precipitation. 

 

The soil layer generates runoff in two ways. First there is a direct runoff component, which is the portion 

of the effective precipitation (precipitation plus snowmelt) that directly enters the stream system. The 

remaining effective precipitation infiltrates into the soil layer. The direct runoff is a function of the soil 

surface and models differently for frozen and nonfrozen soil, determined by temperature. The infiltration 

then enters the soil layer. A nonlinear set of equations determines how much water leaves the soil as 

runoff, is percolated to the groundwater, and goes into soil storage. The runoff is a linear relation of soil 

water storage; and percolation is a nonlinear relationship of both soil and groundwater storages. 

 

The groundwater then receives percolation from the soil layer and runoff is generated as a linear function 

of groundwater storage. 

 

The soil water processes have six parameters, like the SIXPAR model (Gupta and Sorooshian, 1983), 

that are determined via calibration of each watershed.  

 

B.1.1 Inputs 

 

CLIRUN-II requires inputs of precipitation, temperature, PET, observed runoff, and the basin boundaries. 

There have been many methods developed to calculate PET. A suite of PET models is available for use 

in CLIRUN-II.  
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The weather values then need to be averaged over each basin. The Massachusetts Institute of  

Technology Joint Program has developed a basic tool, BasinFrac, to do this using ESRI’s arcGIS and 

Matlab (data analysis software by Mathworks). This method requires that the basin boundaries be in a 

shape file (.shp format). The intersect command is used in arcGIS to find the percentage of each weather 

cell that is contained in each basin. Then Matlab is used to find each basin’s weighted average (weighted 

by area). 

 

B.1.2 Calculations 

 

The runoff calculation undergoes three model processes: snow, soil moisture balance, and  runoff. 

 

B.1.2.1 Snow Model 

 

For each time (day or month), the snow model undergoes the following process.  

 

First, the precipitation of the day or month is multiplied by a calibrated intercept coefficient. This 

coefficient attempts to simulate the effects of the ground cover (foliage, trees, bushes, and so on) by 

catching some of the rain before the rain hits the ground. 

 

Each day or month is then split into three temperature categories: high, medium, or low. These categories 

are based on two calibrated coefficients: Th and Tl. If the temperature is less than Tl, all of the 

precipitation is considered to fall as snow, and none of the current snow pack melts—meaning that none 

of the precipitation can enter the soil on that day or month.  

 

If the precipitation is in between Tl and Th, then only some of the snow stays frozen as snowpack, while 

some of the snow melts. The following two equations are used to find how much snow melts and how 

much remains frozen: 

 

 
l

T

h l

T T
K

T T




                                                                                   (EQ 1) 

          

 

 
(1 0.5 ) (1 )C P T TSP SP K P K      

                                     (EQ 2) 

 

where KT is a fraction coefficient based on temperature, Tl is the calibrated low temperature threshold, Th 

is the calibrated high temperature threshold, SPC is the current snow pack, SPP is the previous snow 

pack, and P is the current precipitation. The current snow pack is then allowed to melt using a calibrated 

value Dm. The melted snow is added to the next time period’s precipitation and removed from the current 

snow pack. 

 

If the temperature is greater than Th, all of the precipitation is assumed to fall as rain, and the Dm of the 

current pack melts. Again, the melted snow is added to the next time period’s precipitation and removed 

from the current snow pack.  
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After each time period undergoes this process, a new precipitation time series is produced and used in 

the soil moisture balance model. 

 

B.1.2.2 Soil Moisture Balance Model 

 

For each time (day or month), the soil balance undergoes a process. This process is solved using an 

ordinary differential equation function solver built into Matlab known as ode45. 

 

First, the soil moisture in the upper soil layer is compared to the value of saturation. The saturation value 

is the maximum amount of moisture that a layer can hold (commonly known as the Water Holding 

Capacity). This coefficient is found through the calibration process. If the soil moisture in the upper layer 

is more than the saturation value, the excess water is considered to escape by surface runoff using the 

following equation: 

 

 S uR M sat 
                                                                              (EQ 3) 

 

Where Rs is the surface runoff, Mu is the soil moisture of the upper layer, and sat is the saturation value of 

the soil. The soil moisture in the upper layer is set to the value of saturation, and none of the precipitation 

is allowed to enter the soil. The precipitation also becomes surface runoff by multiplying the precipitation 

value by a calibrated coefficient known as over: (precip  over). This part of the surface runoff is 

commonly referred to as ponding. If the soil moisture in the upper layer is less than the saturation value, 

the surface runoff is considered to be zero, and all of the precipitation is allowed to enter into the upper 

layer.  

 

Next, actual ET is calculated. Actual ET is a function of potential and soil moisture state following the FAO 

method (FAO, 1996). If the soil moisture in the upper layer is more than half of the saturation value (0.5  

sat), then the actual ET is equal to the PET of the given time (day or month). If the current soil moisture of 

the upper layer is less than half of the saturation value, then actual ET is calculated using the following 

equation:  

 

 0.5

uM
ET PET

sat

 
  

                                                               (EQ 4) 

 

where Mu is the soil moisture of the upper layer, and sat is the saturation value of the soil.  

 

Then the changes in soil moisture in the upper and lower layer are calculated using the following two 

equations: 
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Where 
du

dt
 and 

dl

dt
 are the changes in the soil moisture of the upper layer and lower layer, 

respectively, with respect to time; P is the precipitation; Rs is the surface runoff (either caused by ponding 

or the runoff not allowed to enter the upper soil layer); Ku and Kl are calibrated soil parameters of the 

upper and lower layer, respectively; Mu and Ml are the soil moisture values of the upper and lower layer, 

respectively; and lm is a calibrated lower layer thickness value. 

In Equation 4, the effective precipitation is calculated as (P  Rs  ET) and the subsurface runoff is 

calculated as Ku  Mu. In Equation 5, the baseflow is calculated as  Kl  Ml. And in both Equations 4 and 

5, the percolation from the upper layer to the lower layer is calculated as: 
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  
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   

 

 

B.1.2.3 Runoff Model 

 

Once the ordinary differential equation, described previously, of the soil moisture is solved, most of the 

runoff calculations have already been done. In the runoff model section, the runoff values are simply 

sorted and summed so that total runoff  surface runoff  subsurface runoff  baseflow. The total runoff is 

typically what is reported as the CLIRUN-II output. 

 

B.1.3 Output 

 

Each of the separate runoff values, including total runoff, is directly output as millimeters/month. To obtain 

the runoff in usable units, like cubic meters per second(CMS) or MCM per month, the areas of each basin 

are used.  

 

B.2 Calibration/Validation Process 

 
A calibration procedure is used to determine 10 coefficient values that vary from place to place. Table B-1 

illustrates these calibrated coefficients providing the name, symbol used in this report, and bounds. The 

bounds are used during the calibration process to avoid unrealistic coefficient values. 
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Table B-1.  Calibration parameters in CLIRUN-II 

 

NAME SYMBOL BOUNDS 
Intercept coefficient inter 0.6 – 1.1 

High temperature threshold Th 0 – 20 

Low temperature threshold Tl 15 – 15 

Maximum snowmelt Dm 0 – 50   

Saturation value sat 2 – 200  

Lower layer thickness lm 2 – 200  

Upper layer runoff coefficient Ku 103
 – 1.9  

Lower layer runoff coefficient  Kl 103
 – 0.5 

Percolation coefficient Kp 104
 – 0.3 

Excess precipitation runoff coefficient over 0.01 – 0.2  

Source: The bounds are constraints place on the parameters in CLIRUN-II 

 

The observed runoff is used in an iterative calibration scheme, where each iteration undergoes the 

following steps: 

 

1. The 10 calibrated coefficients are intelligently estimated based on the previous iteration results and 

a given realistic range (for the first iteration, given initial values are used). 

2. CLIRUN-II runs, estimating runoff over the calibration period.  

3. The estimated runoff is compared with the observed runoff using an objective function or error 

statistic. 

4. The model checks the error statistic to see if the calibration goal has been met. If the goal is not 

met, the model begins another iteration, starting with step 1. 

 

The objective function in this case is calculated as follows: 

 

 
2( )i iE M O                                                                           (EQ 7) 

 

Where E is the error statistic (commonly known as the Residual Sum of Squares); Mi is the modeled 

average runoff for month i; and Oi is the observed average runoff for month i. Because the UNH-GRDC 

runoff data is the predicted average monthly “observed” runoff (12 values for each 0.5  0.5 degree cell), 

the modeled runoff was first averaged over each month. A built-in Matlab function was used called 

patternsearch. This function intelligently finds the minimum value of the objective function using a pattern 

search algorithm.  
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ANNEX C: COMPARISON OF CLIRUN-II RESULTS USING GRDC 

VERSUS IN-COUNTRY DATA: SELECTED BASINS16 

 

C.1 Introduction 
 

This appendix qualitatively examines the uncertainties of the CLIRUN-II model results presented in 

Alavian et al. (Alavian et al., 2009). These uncertainties stem from many of the aspects involved in the 

development of the CLIRUN-II runoff estimates. These aspects can be split into two main categories: 

inputs into CLIRUN-II and operations within CLIRUN-II. The inputs used in CLIRUN-II for Alavian et al.’s 

report come from three primary sources: the CRU, which provides historic climate data; the IPCC, which 

provides future climate predictions; and the UNH- GRDC, which provides the baseline historic runoff.  

 

The CLIRUN-II results which follow when using UNH-GRDC data for calibration are listed below as 

CLIRUN_GRDC_CRU in order to tag the origins of the input data. Another data set, listed below as 

CLIRUN_LOCAL_CRU, is being developed in this study using a local set of historic streamflow data, 

instead of the UNH-GRDC estimated historic streamflow data. Five basins were selected for this study: 

the Zambezi Basin in southern Africa, the Blue Nile Basin in Ethiopia, the Red River in Vietnam, the 

Vardar Basin in Macedonia, and the Sao Francisco in Brazil. Maps and brief summaries of each of these 

basins are provided in Section C.2. 

 

 

C.2 Basins/Study Regions 

 
C.2.1 Zambezi River Basin 

 

The Zambezi River Basin watershed spreads over nine countries: Zambia, the Democratic Republic of 

Congo, Angola, Namibia, Botswana, Zimbabwe, Mozambique, Malawi, and Tanzania. The Zambezi River 

is the largest river that flows into the Indian Ocean and the Zambezi basin is the fourth largest in Africa 

(FAO, 1997).  

 

The observed streamflow data used for this Zambezi Basin study was given by Charly Cadou, of BRL 

Ingenierie (Cadou, 2009). The data spans from 1962 to 2002 for 20 stations, although most of the 

stations were missing data within that range, and some were missing most of the data within that range. 

Of the 20 stations, 12 were considered acceptable for this study. The other eight stations were 

considered unusable because either the location of the gauge was unknown or too much of the data was 

artificially produced using a cross correlation method. For the 12 stations selected, the years 1971 to 

1990 were used for calibration, as this time period contained fewer artificially reconstructed values; 

                                                      

16
 This analysis and discussion is excerpted from: Strzpek, K.M, and C.W. Fant IV. 2010. Water and Climate Change: 

Modeling the Impact of Climate Change on Hydrology and Water Availability. Selected Basin Study. Draft 2. 
University of Colorado and Massachusetts Institute of Technology.  
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however, for consistency, the observed streamflow from 1986 to 1995 for these stations was used to 

compare with the UNH-GRDC runoff fields. 

 

The map in Figure C-1 shows the basins modeled in the Zambezi Basin. The red triangles represent 

gauge stations that were used for the calibration of CLIRUN-II and the green triangles represent the 

GRDC gauges used in the UNH-GRDC project. The solid red lines represent the basin boundaries used 

in this study (also used in Alavian et al.’s report) based on the Hydro1k catchment level 3. The solid black 

lines represent country boundaries. Also, each basin modeled has been filled in by a unique color 

identified in the legend. In the cases where the basins overlapped, the upstream basins were given 

mapping priority, meaning that they are shown as covering the overlapping section.  

 

Figure C-1.  Zambezi Basin map—all basins  

 

Source: Authors’ analysis (data provided by Cadou, 2009) 

 

There are only four GRDC gauges used in the UNH-GRDC project that are a part of the Zambezi basin. 

Two of the four are close to one another (these are located in the Gwayi Kamativi subbasin and are 

shown in magenta in Figure C-1). The other two are on the Shire River in Malawi. Therefore, most of the 

UNH-GRDC results used for comparison in the Zambezi are modeled using the WBM results, that is, 

without using the observed discharge adjustment.  
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C.2.2 Blue Nile and Ethiopia Basins 

 

The Blue Nile is one of two major tributaries of the Nile (the White Nile is the other major tributary). The 

Blue Nile gathers most of its volume from Lake T’ana in the Ethiopian Highlands. The Blue Nile is known 

to have heavy seasonal and annual fluctuations in flow (Block et al., 2007). 

 

The data for this study on the Blue Nile basin was provided by Paul Block and Kenneth Strzepek (Block 

and Strzepek, 2010), who collected the data from the Ethiopian Government while in Ethiopia. Some of 

the data was considered unusable because the basin size would have been too small in comparison to 

the Hydro1k level 3 and level 4 catchment scale. 

 

The map in Figure C-2 shows the basins modeled in the Blue Nile and other basins in Ethiopia. The red 

triangles represent gauge stations that were used for the calibration of CLIRUN-II. The solid brown lines 

represent the basin boundaries used in the Alavian et al. (Alavian et al., 2009) report based on the 

Hydro1k level 3 catchment. The solid black lines represent country boundaries. Each basin modeled has 

been filled in by a unique color identified in the legend. Again, in the cases where the basins overlapped, 

the upstream basins were given mapping priority, meaning that they are shown as covering the 

overlapping section. As shown in Figure C-2, the only GRDC gauge used in the UNH-GRDC project lies 

on the Blue Nile in between two of the gauges used in this study: the Blue Nile gauge and the Sudan 

Border gauge. 

Figure C-2.  Blue Nile and Ethiopia Basins map—all basins 

 

Source: Authors’ analysis (data provided by Block and Strzepek, 2010) 
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C.2.3 Red River and Vietnam Basins 

 

The Red River starts in southwestern China and discharges into Northern Vietnam, passing through 

Vietnam’s capital, Hanoi. 

 

The data for this study on the basins in Vietnam was provided by Jean Marc Mayotte (Mayotte, 2010), 

who was given the data from the Government of Vietnam while he was in country. Like the Blue Nile 

study, some of the basins were considered unusable because the basin size was too small in comparison 

to the Hydro1k level 4 catchment size, the size of the UNH-GRDC runoff fields (0.5  0.5 degree), and the 

CRU weather data (also 0.5  0.5 degree). 

 

The map shown in Figure C-3 presents the basins modeled in the Red River and other basins in Vietnam. 

The red triangles represent gauge stations that were used for the calibration of CLIRUN-II. The solid 

brown lines represent the basin boundaries used in Alavian et al. (Alavian et al., 2009) on the Hydro1k 

level 4 catchment scale. The solid black lines represent country boundaries. Each basin modeled has 

been filled in by a unique color, which is identified in the legend. In the cases where the basins 

overlapped, the upstream basins were given mapping priority, meaning they are shown as covering the 

overlapping section. 
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Figure C-3.  Red River and Vietnam Basins map—all basins 

 

Source: Authors’ analysis (data provided by Mayotte, 2010)  

 

As shown in Figure C-3, there are many GRDC gauges (used in the UNH-GRDC analysis) on the map. 

Unfortunately, none of the gauges correspond with the gauges used in this study. 

 

C.2.4 Vardar River Basin 

 

The Vardar River basin lies primarily in the Former Yugoslav Republic of Macedonia, although some of 

the basin reaches north to part of Serbia and farther south, flowing out of Greece (the Vardar changes to 

the Axios at the Greece–Macedonia border). The Vardar River is the only river in this study that requires 

the snowmelt model built into CLIRUN-II, because of the snowfall in the mountains of Macedonia. 

 

The data acquired for this Vardar Basin study was provided by the Macedonia master plan (Tippetts et 

al., 1977). In this report, a time series was only provided for the gauge near Gevegelija (1950 to 1968), 

while a monthly mean of streamflow (12 values) was provided for the remaining six basins. For this 

reason some of the plots explained in Section C-3 were not appropriate for the remaining six basins. 
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The map shown in Figure C-4 presents the basins modeled in the Vardar Basin. The red triangles 

represent gauge stations that were used for the calibration of CLIRUN-II. The solid brown lines represent 

the basin boundaries used in Alavian et al. (Alavian et al.,2009), based on the Hydro1k level 4 catchment 

scale. The solid black lines represent country boundaries. Each basin modeled has been filled in by a 

unique color identified in the legend. In the cases where the basins overlapped, the upstream basins were 

given mapping priority, meaning that they are shown as covering the overlapping section. 

 

Figure C-5 shows the area surrounding the Vardar River basin. 

 

Figure C-4.  Vardar Basin map—all basins 

 

Source: Authors’ analysis (data provided by Tippetts et al., 1977) 
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Figure C-5.  Vardar Basin map, showing the surrounding area 

 

Source: Authors’ analysis (data provided by Tippetts et al., 1977) 

 

As shown, the Hydro1k level 4 catchment, which contains the Vardar basin, is large compared to the 

basin itself. So the basin is not very well represented by the Hydro1k level 4 catchment scale. There are 

also few GRDC gauges in this area, and none in the Vardar basin. The observed runoff data used in this 

study was only available as monthly average values, except for the discharge at Gevegelija, which 

spanned from 1950 to 1968. For this reason, many of the plots were not appropriate for a comparison 

between two monthly average data sets, meaning the observed reflected results from the UNH-GRDC 

project. 

  

C.2.5 Sao Francisco Basin 

 

The Sao Francisco River is the fourth largest river in South America, with an average annual flow of 2,850 

CMS. The river crosses through diverse climatic and socioeconomic regions of Brazil over its 2,900 km 

stretch before it empties into the Atlantic Ocean just south of the equator. 

 

The data acquired for this Sao Francisco basin study was provided by the Center for Sustainability and 

Global Environment of the University of Wisconsin, Madison. Only one gauge station with suitable data 

was available for this basin. The gauging station is near Juazeiro, Brazil, just downstream of the 12
th
 

largest human made reservoir in the world, the Sobradinho Reservoir. 

 

The map shown in Figure C-6 presents the basin upstream of the Juazeiro gauging station. The red 

triangles represent gauge station that was used for the calibration of CLIRUN-II. The solid brown lines 

represent the basin boundaries used in Alavian et al. (Alavian et al., 2009) based on the Hydro1k level 4 

catchment scale. The solid black lines represent the east coast of Brazil.  
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Figure C-6.  Sao Francisco Basin map—upstream of the Juazeiro gauging station 

 

Source: Authors’ analysis (data provided by the Center for Sustainability and Global Environment) 

 

C.3 Calibration and Historical Runoff Analysis Results 

 
C.3.1 Calibration Results 

 

Two goodness-of-fit tests were applied to each of the streamflow results in the five basin studies: the 

coefficient of determination (R
2
), and the annual error. The coefficient of determination was calculated 

using the following equation: 
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Where O represents the observed streamflow, and M represents the modeled streamflow for a given 

month and gauge location. In this case, an R
2
 value of 0 suggests that the modeled results are as good 

as the mean value of the observed streamflow, and an R
2 
value of 1 suggests that the modeled results 

are perfect in comparison to the observed results. The annual error (E) is a measure of over or under 

estimating the streamflow. The annual error is calculated using the following equation: 

i i

i i

i

i

O M

E
O




 


                                               (EQ 2) 
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Table C-1 shows the calibration results from the Zambezi basin study, Table C-2 shows the results from 

the Vietnam basin study, Table C-3 shows the results from the Blue Nile and Ethiopia basins study, Table 

C-4 shows the results from the Vardar basin study, Table C-5 shows the Vardar Basin calibration results 

at Gevegelija, and Table C-6 shows the results from the Sao Francisco basin study. These tables show 

results for both the full calibration and the monthly calibration. In the full calibration, the full observed 

streamflow time series was used for the calibration. In the monthly calibration, only the average monthly 

values were used to calibrate the model, but the full observed streamflow time series was used for the 

calibration results shown in Tables C1–C6.  

 

Table C-1.  Zambezi Basin calibration 

 

 

Source: Authors’ calculations 

 

Table C-2.  Vietnam Basin calibration results 

 

 

Source: Authors’ calculations 

 

Full Month Full Month

Kwando River @ Kongola 0.35 0.17 -0.77% 0.35%

Kafue River @ Itezhi Tezhi Reservoir 0.78 0.70 -5.66% -5.19%

Kabompo @ Watopa Pontoon 0.77 0.73 -1.24% -5.25%

Luanginga @ Kalabo 0.58 0.52 -18.36% -13.13%

Zambezi @ Chavuma Mission 0.53 0.53 -14.05% -12.62%

Zambezi @ Victoria Falls 0.07 0.03 0.44% -0.50%

Gwayi @ Kamativi 0.78 0.65 -22.33% -14.76%

Shire @ Chikwawa 0.55 0.36 0.63% 0.17%

Zambezi @ Lupata 0.12 0.11 5.83% 4.67%

Zambezi River @ Katima Mulilo 0.61 0.62 -11.84% -9.14%

Sanyati River Sub-basin 0.67 0.32 -8.89% 16.75%

Zambezi @ Tete 0.27 0.24 1.84% 0.48%

Name Coefficient of Determination (R2) Annual Error

Full Month Full Month

Cua Dat 0.56 0.49 -9.27% -10.39%

Cung Son 0.56 0.53 -7.57% -1.44%

Hanoi 0.83 0.82 0.92% 0.12%

Thanh My 0.42 0.34 0.71% -0.51%

Yen bai 0.85 0.84 1.37% -0.68%

Ta Lai 0.67 0.68 -6.58% 4.52%

Cam Thuy 0.74 0.72 -9.45% 0.86%

Name Coefficient of Determination (R2) Annual Error
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Table C-3.  Blue Nile and Ethiopia Basins calibration results 

 

 

Source: Authors’ calculations 

 

Table C-4.  Vardar Basin calibration results 

 

 

Source: Authors’ calculations 

 

Table C-5.  Vardar Basin calibration results at Gevegelija 

 

 

Source: Authors’ calculations 

 

Table C-6. Sao Francisco Basin calibration results 

 

 

Source: Authors’ calculations 

 

C.3.2 Historical Results 

 

Plots of the historical analysis results from the gauge station Watopa Pontoon, on the Kabompo River, 

are shown in Figures C-7 through C-14. These plots are shown to serve as an example of the analysis 

results. 

 

Figure C-7 shows the annual discharge of the simulated CLIRUN_LOCAL_CRU results, the measured 

discharge, the simulated CLIRUN_UNH_CRU results, and the UNH-GRDC reported discharge. In this 

Full Month Full Month

Tekeze 0.97 0.93 -6.16% 0.23%

Blue Nile 0.99 0.99 0.75% 0.12%

Baro-Akobo 0.97 0.89 -0.57% -0.87%

Kessie 0.58 0.58 -4.30% -9.41%

Shegolie 0.80 0.79 -12.87% -15.72%

Sudan Border 0.75 0.76 -4.76% -12.66%

Name Coefficient of Determination (R2) Annual Error

Radusa 0.89 -1.81%

Zdunje 0.89 -0.71%

Katlanovo 0.78 -3.92%

Stopanstvo 0.78 -6.60%

Stip 0.68 -7.28%

Vozarci 0.76 -3.12%

Name
Coefficient of 

Determination 
Annual Error

Full Month Full Month

Gevegelija 0.49 0.45 -11.01% 1.27%

Name Coefficient of Determination (R2) Annual Error

Full Month Full Month

Sao Francisco at Juazeiro 0.65 0.63 -0.90% -0.13%

Name Coefficient of Determination (R2) Annual Error
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figure, the UNH-GRDC results are shown as a horizontal line because only 12 monthly averages were 

reported, which can only result in one annual average value. The average monthly values from the UNH-

GRDC (12 values for each basin; one for each month) are recorded to be over the years 1986 to 1995 

(ISLSCP, 2005), so the plots used to compare this data set are also over this time period. In Figure C-8, 

the average monthly values are shown for the local (measured) discharge, the simulated 

CLIRUN_LOCAL_CRU runoff, the simulated CLIRUN_UNH_CRU runoff, and the data from the UNH-

GRDC project. 

 

Figure C-7.  Annual comparison of CLIRUN-LOCAL, measured, CLIRUN-UNH, and UNH-GRDC runoff for 

the Watopa Pontoon Gauge Station  

 

 

Source: Authors’ calculations 
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Figure C-8.  Monthly comparison of CLIRUN-LOCAL, measured, CLIRUN-UNH, and UNH-GRDC runoff for 

the Watopa Pontoon Gauge Station.  

 

 

Source: Authors’ calculations (measured runoff from Cadou, 2009) 
 

Figure C-9 shows a plot of the measured discharge and the CRU TS 2.1 precipitation. Although other 

parameters significantly affect evaporation (for example, temperature, wind speed, solar radiation, and so 

on), which in turn plays a role in runoff reduction, precipitation is typically the driving force behind 

discharge time series patterns. So these plots are used to better understand, qualitatively, how much the 

measured discharge is driven by climate, and how much the discharge is driven by human induced 

effects. In general, if the precipitation and runoff show similar trends (for example, higher precipitation 

generally causes higher runoff), then the measured discharge is considered to be climate induced. If the 

two time series do not show similar trends, then the measured discharge is most likely influenced by 

civilization, although the effect of the soil or evaporation (not shown in a plot of precipitation) could also 

be the cause of the trend differences. 
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Figure C-9.  Precipitation and measured discharge for the Watopa Pontoon Gauge Station 

 

Source: Precipitation data from CRU, runoff data from Cadou, 2009 

 

Each of the basins was calibrated to the measured discharge time series, the UNH-GRDC data, and the 

mean monthly discharges form the measured time series. The calibration to the measured mean monthly 

discharge was done to serve as an investigation of the information lost when using a mean monthly 

calibration data set —compared to using a full time-series calibration data set. Figures C-10 through C-14 

show the results of this analysis. Figure C-10 shows a snapshot of the monthly discharge over 10 years. 

The line labeled “Observed” is the measured runoff time series, the line labeled “Full calibration” is the 

simulated discharge for the results using the full time series of measured discharge for calibration, and 

the line labeled “Month calibration” is the simulated discharge for the results using the mean monthly 

values for calibration. Figures C-11 through C-14 also use this same notation. Figure C-11 shows the 

mean monthly values from the three data sets. Figure C-12 shows the inverse cumulative distribution 

function, where the discharge from each data set was sorted and plotted from lowest flow (on the left) to 

highest flow (on the right). These plots are used to better understand if the simulated flows are able to 

capture the variety (high, medium, low) of the observed flows. These plots can also show if the simulated 

flow is generally overestimating or underestimating the historical record. Figure C-13 shows the annual 

flow time series over the entire measured time-span, similar to the monthly time series shown in Figure C-

10. And finally, Figure C-14 shows the inverse cumulative distribution function of the annual flows.  
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Figure C-10.  Snapshot of monthly flows for the observed, full calibration, and month calibration for the 

Watopa Pontoon Gauge Station  

 

Source: Authors’ calculations (observed data from Cadou, 2009) 

Figure C-11.  Monthly averages for the observed, full calibration, and month calibration for the 

Watopa Pontoon Gauge Station 

 

 

Source: Authors’ calculations (observed data from Cadou, 2009) 



Climate Variability and Change: A Basin Scale Indicator Approach to Understanding the Risk to Water 

Resources Development and Management 

 

84 

 

Figure C-12.  Sorted monthly flows for the observed, full calibration, and month calibration for the 

Watopa Pontoon Gauge Station 

 

Source: Authors’ calculations (observed data from Cadou, 2009) 

Figure C-13.  Annual flows for the observed, full calibration, and month calibration for the Watopa 

Pontoon Gauge Station 

 

Source: Authors’ calculations (observed data from Cadou, 2009) 
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Figure C-14.  Sorted annual flows for the observed, full calibration, and month calibration for the 

Watopa Pontoon Gauge Station 

 

Source: Authors’ calculations (observed data from Cadou, 2009) 

 

C.4 Discussion of Results 
 

These results vary from basin to basin but some patterns do emerge. One of these patterns is the 

importance of the calibration runoff accuracy. CLIRUN-II is good at matching the runoff it is given for 

calibration, but CLIRUN-II is only accurate when the observed (or calibration) runoff is accurate. This 

observation reinforces the importance of the observed runoff quality. 

 

Another observation found in the results is that the UNH-GRDC data does not generally match the 

gauged runoff data. In some cases the difference is quite extreme. In most cases, these extreme 

discrepancies exist in basins where the UNH-GRDC team did not have gauged data; where the gauged 

data did not exist, the runoff presented was modeled runoff only—rather than a combination of measured 

and modeled runoff. This again emphasizes the importance of accurate, good quality calibration runoff 

data. 

 

Besides these observations, other issues arise related to the results presented here. Hydrologists 

generally make the distinction between naturalized and gauged runoff. Naturalized runoff is the runoff 

caused by the weather (precipitation, temperature, and so on) and the earth’s surface (topology, soils, 

ground cover, and so on) without the effects of civilization. On the other hand, gauged runoff includes the 

effects of civilization (dams, reservoirs, ground cover changes, and so on). CLIRUN-II was built to model 

naturalized runoff, meaning that the equations built into the model do not included the effects of 

civilization. Naturalized flow is much easier to model, especially when estimating future runoff, because 
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changes in civilization are difficult to estimate. But CLIRUN-II models the runoff based on the observed 

runoff used for calibration (which typically includes the effects of civilization), so one could argue that 

CLIRUN-II is able to model either naturalized or gauged runoff, depending on the calibration runoff used. 

For the most part, the UNH-GRDC runoff data is based on a naturalized flow model, especially where 

observed runoff data was not available. Where observed data was available, the UNH-GRDC used the 

naturalized flow results and corrected the modeled results on an annual basis. Therefore, the seasonality 

from the naturalized flow model remained in the results. The distinction between natural and gauged flow 

values might explain some of the differences between the gauged flow and the UNH-GRDC flow. It might 

also explain some of the differences between the gauged flow values and the CLIRUN-II results, although 

those differences are less noticeable. Because this study is attempting to better understand how the 

runoff and streamflow will be affected by the future weather, a naturalized flow model is preferred. A 

gauged flow model could introduce unnecessary errors unrelated to the effects of weather and climate, 

and it would be difficult to obtain estimations of each nation’s plans for their water supply, especially for a 

global study.  

 

To better understand the loss of information caused from using monthly average streamflow (UNH-

GRDC) instead of a time series (used in this study) for the calibration, each basin was modeled using the 

observed time series (full calibration) and the monthly average of the observed time series (month 

calibration) and compared (Figures C-10 through C-14 are examples of this). These results vary from 

basin to basin, depending on the nature of the basin and the naturalized quality of the basin. Although the 

month calibration had the tendency to not capture the extreme flows very well, especially the high flows, 

in most cases, the month calibration and the full calibration were relatively similar in quality. The latter 

observation might be a bit counterintuitive because the extreme values are completely removed when the 

monthly mean is used instead of the full time series. But the extreme values are still present in the climate 

data, causing extreme values to be present in the results. These results are due to the fact that CLIRUN-

II is a runoff model based on the physical process of runoff development (as opposed to a model based 

solely on statistics). In some areas, extreme weather events are not present in the CRU data set because 

the CRU data set used a method to “relax” to the 1960 through 1991 time period wherever observed data 

were not present.  
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ANNEX D: GUIDE TO NAVIGATION OF THE WORLD BANK CLIMATE 

PORTAL HYDROLOGIC INDICATORS 

There are two different levels of hydrological indicators data on the World Bank Climate Portal: detailed 

basin-level information in the form of projected changes for each indicator and box and whisker plots; and 

global maps providing a broader perspective on regional, national, and continental patterns across basins 

for each of the six hydrological indicators. This appendix describes the information available on the World 

Bank Climate Portal (see http://sdwebx.worldbank.org/climateportal/) and explains how to navigate this 

information resource.  

 

D.1 Accessing Basin-Level Indicator Data and Box and Whisker Plots 

 
The Climate Portal contains detailed basin-level information on all studied indicators for all 56 GCM-

SRES combinations, as well as box and whisker plots representing this information. This information can 

be accessed either for a basin of interest or in the form of country averages. However, when using 

country average results, caution should be taken for reasons described in Box D-1. 

 

Box D-1.  Country average results 

Caution should be taken with the country average results. To develop country 

averages, basin results are averaged within a country based on their area. Therefore, in 

countries dominated by one or two large basins, the country average will be biased by 

the large basins. This can be especially misleading to policy-makers in countries where 

most of the population resides outside these large basins. For example, in Botswana, the 

country average result is biased by the large basin of the Kalahari Desert, with a 

projected very dry future. The majority of Botswana’s population is located in other 

basins to the east, which are not predicted to have as intense drying. Therefore, 

although the country average indicates significant drying, this is less likely to be an issue 

in population centers. As this example shows, to understand the projected impacts of 

climate change, it is important (especially in countries with few large basins) to look at 

all the basin results for that country. 

 

The following steps describe how to access this information from the Climate Portal. 

 

Step 1: Locate the basin or country of interest. Upon arriving at the Climate Portal, users will see a 

map of the world. By either zooming in on an area of interest or using of the search function at the top of 

the map, users can locate the basin or country of concern. Once a basin is selected, the user will see a 

pop-up window, as shown in Figure D-1 
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Figure D-1.  Locating basin or county or interest 

 
 

 

Step 2: Select “Impacts” then “Water resources” and accept warnings. The pop-up window that 

users see contains several options. Users should click on the “Impacts” tab at the top of the window, and 

then the “Water resources” tab within the window that appears (these tabs are circled in Figure D-2). This 

will direct users to a dialog box with the following message: 

 

These data were developed at a River Catchment level with global data and were intended 

only for use in regional scale investment analyses. However, World Bank Staff have found 

the data useful for informing stakeholders on climate change risks in the water sector at the 

planning and investment strategy level. Please be warned that this data is not intended for 

use in any design study. 

 
Clicking the “Click here to get access to data and indicators” (circled in Figure D-2) will direct the user to a 
page with another message that reads: 

 

The data and indicator results were NOT intended to be used on a project scale; and 

although the results can be used on a basin and seasonal level, the user should be 

cautious. The authors of these results advise the user to conduct a more detailed study 

before any major decisions are made on the results presented here. 

 

Users must accept warning and click on “Click here to get access to data and indicators” at the bottom of 

the page in order to access hydrological indicators data.  
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Figure D-2.  Getting access to data 

 
 

Step 3: Choose indicators, models, and time period for data display. Once users have clicked on the 

second “Click here to get access to data and indicators,” this will pull up a page that displays a map of the 

basin of interest. Below the map will be three tabs that say: “View and download data”, “Basin box Plots”, 

and “Country box plots” (see Figure D-3).  

 

Within the “View and download data” tab, users can access data for any indicators, GCM-SRES 

combinations, and time periods that are of interest. To do this, users select the emissions scenarios, 

indicators, GCMs, and time periods for which  they wish to see data. The available parameters are as 

follows: 

 

 Emissions scenarios: A1B, A2, and B1 

 Indicators: mean annual temperature, mean annual precipitation, high flow (flood indicator), low flow 

(drought indicator), MAR, annual baseflow, reservoir storage, mean annual irrigation deficit (or 

reference crop water deficit), CMI, and PET 

 GCMs: bccr_bcm2_0, cccma_cgcm3_1, cccma_cgcm3_1_t63, cnrm_cm3, csiro_mk3_0, 

csiro_mk3_5, gfdl_cm2_0, gfdl_cm2_1, giss_aom, giss_model_e_h, giss_model_e_r, 

iap_fgoals1_0_g, inmcm3_0, ipsl_cm4, miroc3_2_hires, miroc3_2_medres, mpi_echam5, 

mri_cgcm2_3_2a, ncar_ccsm3_0, ncar_pcm1, and ukmo_hadcm3, ukmo_hadgem1 

 Time periods: 2030 to 2039 and 2050 to 2059 

 

Once users have selected emissions scenarios, indicators, GCMs, and time periods of interest, they can 

click “Show data” to view the data of interest (data will be shown as changes in indicator values relative to 

the baseline) in tabular form; an example of this is provided in Figure D-4. Alternatively, clicking 

“Download data” will allow the user to download the data as a spreadsheet in Microsoft Excel. 
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Figure D-3.  Viewing and downloading data 

 
 

 

Figure D-4.  Tabular display of indicator data, as percent change from baseline 

 
 

Step 4: Access box plots. Next to the tab that says “View and download data,” users will see tabs that 

say “Basin box plots” and “Country box plots.” By clicking on “Basin box plots,” users will access two box 

and whisker plots for the basin of interest, one for the 2030s and one for the 2050s (see Figure D-5). 

Similarly, by clicking on “Country box plots,” users will access two box and whisker plots for the country of 

interest, one for the 2030s and one for the 2050s (see Figure D-6). As described earlier in Box D-1, 

caution should be taken when using country average results. 
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Figure D-5.  Example basin box plots for the 2030s and 2050s 

 
 

Figure D-6.  Example country box plot for the 2030s 

 
 

A total of 30 box and whiskers are arrayed on each graphic, one for each of the three SRES scenarios 

and the 10 indicators (which include the six hydrological indicators, temperature, precipitation, CMI, and 

PET). The box itself displays the range of variability across the GCMs for each indicator and SRES 

scenario.  
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D.2 Mapping of Data 

 
In addition to providing detailed basin-level data, the Climate Portal also contains a high-level mapping 

tool that allows users to see projected risk across basins. Directions for accessing this tool are provided in 

the following steps. 

 

Step 1: Find the maps. To reach the interactive mapping tool, start on the climate portal homepage 

(http://sdwebx.worldbank.org/climateportal/). Here, users will see a “Map it!” vertical options bar on the 

left. One of the options on this vertical bar is “Impact maps.” Users should click here. This will open up a 

list of options. Users should scroll to the bottom of the list and click “Click here for more maps” (see 

Figure D-7). This will take the user to the interactive mapping tool.  

 

Figure D-7.  Interactive mapping tool interface 

 
 

 

Step 2: Navigate the pop-up window. Next, a pop-up window will appear with six maps of the globe 

showing indicator results for the 2030s and 2050s and the A1B, A2, and B1 SRES scenarios. The results 

are displayed for a single GCM and a single hydrological indicator. Figure D-8 shows an image of the 

pop-up window. 
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Figure D-8.  Mapping tool pop-up window 

 
 

 

Step 3: Zoom in and choose the indicator and model. To zoom in to a particular region of interest, the 

user will either double-click a particular area on the interactive map or click the plus or minus buttons 

located at the top left corner of each of the six maps. Lastly, to view the mapped results for a particular 

indicator and GCM, the user will select from the “Indicator” and “GCM” pull down menus at the top of the 

page. Figure D-9 displays an example of these detailed map results. 
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Figure D-9.  Detailed map results 
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ANNEX E: BASIN SELECTION AND NAMING CONVENTION 

The basin selection and naming convention was provided by a previous study (Farmer and Strzepek, 

2010).
17

 The naming convention was applied to the global basins so that they might be identified uniquely 

within the World Bank Climate Portal.
18

 Each naming identifier gives information about the drainage and 

location of that region, and is globally unique. 

 

This naming convention was developed by fusing the Hydro1k level 3 and level 4 basins of the World 

Bank regions (Africa, East Asia and Pacific, Europe and Central Asia, Latin America and the Caribbean, 

Middle East and North Africa, and South Asia) with major river basins recognized by the GRDC (GRDC, 

2007) and country boundaries. 

 

Originally, basins were identified with a number, which was only unique to a given Hydro1k continent. 

First, this number was appended to an abbreviation of the given Bank region. This provided some 

inconsistencies, as some Bank regions crossed continents, that is, Latin America and the Caribbean. To 

rectify these inconsistencies, each basin was given a unique, randomly assigned, four-digit code. These 

codes, with a “G” appended to the front, are unique global identifiers. 

 

In an effort to provide more information about each basin, rather than just a number, efforts were made to 

combine global identifiers with Bank regions, GRDC basins, and countries. The global identifiers were 

joined with the three-digit abbreviations of Bank Regions. These were then crossed joined with GRDC, 

noting which GRDC basin covered the majority of the level 3 and level 4 basins.
19

 Finally, these were 

joined with national boundaries. 

 

Supplemental files that further explain these names are available on the Climate Portal. They are 

contained in the file Basin_Names_Supplemental_Files.zip, which includes the following documents: 

 Figure1.pdf 

 AFR.pdf 

 EAP.pdf 

 EAC.pdf 

 LCR.pdf  

 MNA.pdf 

 SAR.pdf 

                                                      

17 The database used for the selection of basins and their naming convention was created by William Farmer and Kenneth 
Strzepek. This section was taken directly from the memo/report “Unique Identifiers for the Climate Portal at the World Bank 
Group: A Method for Identifying Global Basins” delivered to the World Bank in February of 2010 (Farmer and Strzepek, 
2010).  

18 Climate Change Knowledge Portal. The World Bank 2011. http://sdwebx.worldbank.org/climateportal/. 

19 The GRDC drainage basins represent only 405 major basins of the globe.  As such, these do not cover all Hydro1k level 3 
and 4 basins. The convention looks for the GRDC that covers the majority of each level 3 and 4 basin. In some cases, 
multiple GRDC basins were found in a single level 3 or 4 basin. In these cases, the GRDC basins that accounted for the 
majority of the level 3 or 4 basin was retained. 
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 Appendix_I._8413.xls 

 Applendix_II_8413.xls 

 

The table in the file Appendix_I_8413.xls gives a list of each basin, displaying the original Bank Region 

code and number, the new global identifier, Bank Region, GRDC drainage, country, and long name. The 

long name is a concatenation of the global identifier, bank region and, if available, GRDC drainage, 

preceded by a “D.” If the drainage was not available, the country was noted, preceded by a “C.”  

 

An additional referencing convention was developed. The global basins were intersected with national 

boundaries. The result was that each global basin was broken into its parts in separate countries. This 

database is provided as an Microsoft Excel document (Appendix_II_8413.xls). This allows the user to 

note which countries intersect with a given basin or which basins comprise a certain country.
20

 

 

A mapping of the regions can be seen in a separate PDF file, Figure1.pdf. PDFs are included for each 

region; these are labeled with the global codes so as to provide simplified geospatial references. Due to 

the limits of text size and resolution, this is not the recommended spatial exploration. The basins can be 

further explored in the attached ESRI arcGIS shape file. In the event that arcGIS is not available, the 

basins can be explored by Bank Region on Google Earth.  

 

  

                                                      

20 The long names are meant to give a general idea of the location of each basin.  Due to issues of scale and resolution, 
some small inconsistencies are present, though extremely rare. As more data sets of basin flow are compiled, these 
inconsistencies can be rectified. 
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ANNEX F: ASSESSING THE IMPACT OF CLIMATE VARIABILITY AND 

CHANGE IN BOTSWANA: THE ROLE OF GCMS AND THE CLIRUN-II 

HYDROLOGIC MODEL 

F-1 Introduction 
 

This Annex provides an illustration of how the methodology elaborated above has been used in the 

context of assessing the impact of climate variability and change in Botswana (World Bank 2010b). In the 

case of Botswana additional analyses has been carried out as described below. Depending on the 

objective for the specific analysis to be carried out, it is to be expected that additional analysis is required 

or prudent. The present annex first provides the context of Botswana in relation to climate variability then 

a brief summary of the analysis which was carried out. 

 

F-2 Background 
 

In Botswana (see Figure F-1 for map of country), physical water scarcity is already a constraint to 

economic development and growth, in particular for agriculture (irrigation) and mining. The future 

development of the country depends heavily on water availability. Physical water scarcity is compounded 

by high climate variability and inadequate water resources infrastructure and management. Better 

planning and investment in water security is therefore essential to Botswana’s efforts in achieving its 

development goals. 
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Figure F-1. Map of the Republic of Botswana 

 

Source: (UNEP, 2010). 

Botswana’s highly variable historical precipitation patterns are well-documented. As shown in Figures F-2 

and F-3, intraannual variability as well as interannual variability is relatively large in Botswana. Average 

annual rainfall varies nearly threefold, while average monthly rainfall varies by a similar order of 

magnitude. As a semiarid country, droughts have been common in the past (one in four years is a 

drought year), but floods have also occurred, though much less frequently. Drought in terms of rainfall 

deficits are most common in northern Botswana, while extreme droughts based on low rainfall and soil 

conditions are most common in south-western Botswana (the Kalahari Desert). High rainfall events with 

risks of floods are common in north eastern Botswana where several large dams are located.  
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Figure F-2.  Interannual precipitation variability (mm) 

 

Source: CMU, University of East Anglia data processed by International Research Institute, Columbia University for The World 

Bank, Africa Water Resources in a Changing World, 2010. 

Figure F-3.  Intraannual and precipitation variability (mm) 

 

 
Source: CMU, University of East Anglia data processed by International Research Institute, Columbia University for The World 

Bank, Africa Water Resources in a Changing World, 2010. 

The economic costs of climate variability can be high. It has become evident that recurrent drought and 

floods cause significant losses and negatively impact economic growth.
21

 In 2005, drought diminished 

agricultural planted areas to 72 500 hectares, or only 25 percent of cultivable land in Botswana (SARPN, 

2005). In June 2009, heavy rains flooded seven districts in central Botswana and displaced over 4,000 

inhabitants when their mud dwellings collapsed in the heavy rains (DREF, 2009). These rains were 

particularly unusual because they came in June, traditionally a dry month. It is therefore important that 

Botswana develops capacity to lessen the extent of vulnerability of the country’s economy from climate 

variability. Specifically, there is a need to improve the understanding of future climate variability and 

                                                      

21
 According to a recent UNEP report (see Kandji, S.T. et al., 2006), in 1992, drought-related losses constituted 8 to 9 percent of 

GDP in Zimbabwe and Zambia. Results for Malawi indicate that, on average, droughts and floods together reduce total GDP by 
about 1.7 percent per year. In Mozambique, the shock of the flood of 2000 led to the abrupt fall of the GDP growth rate to 1.5 
percent in 2000. 
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change in Botswana and generate climate risks knowledge to inform national economic development 

policy.  

 

As a first step toward improving the understanding of future climate risks, the World Bank provided 

technical assistance in 2010. The objective of this activity was to quantify the impact of climate change on 

extreme events and the risks for the water sector in Botswana. Using GCMs and the CLIRUN-II 

Hydrologic Model, the Bank was able to illustrate how the underlying variability in Botswana might change 

over the coming decades due to climate change. While GCMs replicate climate variables such as 

temperature and precipitation, the CLURUN II model models the behavior of hydrologic variables 

particularly relevant for water and agricultural planning and investment, including runoff, groundwater 

recharge, and extreme events (floods and droughts). Finally, this data was used to present hydrologic 

indicators such as the Standardized Precipitation Index (SPI), the Palmer Drought Severity Index (PDSI), 

and peak flow ratios. Calculation of the two latter indicators go beyond what has been included in the 

standard methodology explained earlier in this Water Paper. However, it requires a fairly simple algorithm 

to calculate SPI and PDSI based on the climate data of the GCMs. 

 

The analysis confirmed that Botswana is likely to experience greater climatic variability over the coming 

decades. It is noteworthy that while GCMs are often highly divergent for smaller spatial configurations, 

there is greater consensus for Botswana. The modeling results show that droughts and storms are 

expected to increase (in frequency and severity) in western and northern Botswana, while in south-

middle-eastern Botswana (part of the Limpopo basin), precipitation is likely to decrease, but with an 

increased risk in flooding.  There is a bias toward increased droughts, and groundwater recharge is likely 

to decline. 

 

Adaptation is needed to mitigate the adverse impacts of climate change on water-dependent sectors. 

Future growth will likely require improvements in water use efficiency, and the review of existing national 

and sectoral policies to ensure they adequately address climate-related challenges. Future rainfall 

variability and climate change also suggest a need to increase investments in water infrastructure, (for 

example, additional storage volume). Based in part on this assessment, the Government of Botswana has 

decided to approach the World Bank to support the development of an ambitious climate change 

adaptation strategy. 

 

The World Bank technical assistance in developing this adaptation strategy was based in large part on 

recent work implemented by the World Bank specifically the application of a WBM for climate impact 

analysis of runoff (CLIRUN-II) at the subbasin or catchment level across all World Bank regions.
22

 The 

modeled behavior of key hydrologic variables in the major basins of Botswana (see Figure F-4), as well 

as the underlying ensemble of GCM data upon which it is derived, served in several ways to build 

consensus around the need to consider future climate risk in water-related planning and investment.  

 

                                                      

22
 The input for this hydrologic model comes from three primary sources: the CMU (historic climate data); the UNH and GRDC 

(observed historic runoff); and the IPCC (future climate predictions). The model results are calculated and presented at the level 
of USGS Hydo1K level 3. It must be noted that many uncertainties arise from the application of this model at the catchment 
level, particularly where little observed historic runoff data is readily available. For more information on the uncertainties of the 
CLIRUN-II model, refer to Strzepek and Fant (Strzepek and Fant , 2010). 
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Summarized in the following discussion are the key contributions that came about from use of GCM and 

CLIRUN-II model data to mobilize support for policy reform. These impacts include: GCM data provided 

the range of future climate variables; CLIRUN-II Hydrologic Model provided the range of future hydrologic 

variables; new indicators were created using GCM outputs; scientific analysis provided the foundation for 

dialogue on the impacts of climate change on water resources; and, the scientific analysis provided an 

objective platform around which consensus on climate adaptation was reached.  

 

Figure F-4.  Basin Identification map of Botswana 

 

  

Source: Authors’ database basins based on USGS Hydro 1K level 3 
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F-3 GCM Data and the Range of Future Climate Variables 
 

To plan for the future, reliable knowledge of the potential boundaries of change of climate variables is 

most informative. While many individual GCMs are capable of replicating the past, this does not 

necessary imply their ability to project the future. This is particularly troublesome under nonstationarity, a 

phenomenon implying that the future would be different from the past (for example, this could be due to 

changing parameters and relationships between climate variables). The best way to capture the range of 

change is by running an ensemble of GCMs using different emission trajectories (SRES). In the case of 

Botswana, GCMs and SRES are combined to create 56 climate change scenarios. Each of these 

scenarios is considered equally plausible. Ideally one should evaluate the impacts from each climate 

scenario. Unfortunately this is too costly for most detailed modeling analyses. The question then becomes 

how to choose which scenarios to evaluate. 

  

All of the GCM/SRES combinations were evaluated to determine which models represent the extreme dry 

and extreme wet scenarios. Toward this end, each of the GCM/SRES scenarios was ranked by their 

CMI.
23

 A wet scenario meant that the the basins which constitute Botswana experienced the most 

wetness (as expressed by changes in the CMI); a dry scenario, the most drying (as expressed by 

changes in the CMI); and the rest will be somewhere in between. The advantage of this approach is that it 

provides a representation of the full range of available scenarios in a manageable way.  

 

The range of GCM projections reveal a variety of scenarios, all of which estimate that water deficits will 

likely grow in magnitude with climate change. In all areas of Botswana, temperature is projected to 

increase from 0.5 degrees to more than 2 degrees Celsius by 2030. Changes in the CMI ranges from 

increasing by 0.5 to decreasing by 0.75 with most models agreeing that CMI will decrease, and the area 

will become more arid. In the wettest model projections,
24

 climate change might result in a CMI change of 

13 percent. The PET increases slightly around 5 percent with agreement among all the models. 

 

F.4 CLIRUN II Hydrologic Model Data and the Range of Future Hydrologic 

Variables 
 

Future projections of the potential change to hydrologic variables are useful for estimating the likely 

impacts of climate change on water resources at the basin-level. In Botswana, climate data were entered 

as inputs into a calibrated hydrologic model, CLIRUN-II, to generate future projections at basin-level of 

various hydrologic variables. The analysis included runoff, extreme events (floods and droughts), 

precipitation, and groundwater recharge. Given the uncertainly inherent to the climate projections 

themselves, it is not surprising that the model produced a wide variety of hydrologic outcomes for each 

basin. That said, there is a definite bias in all basins toward increased droughts, and groundwater 

recharge appears likely to decline. 

 

In general, the nondesert areas of Botswana show decreasing precipitation and decreasing groundwater 

recharge with increasing droughts. Model results for future runoff and flooding are varied, but generally 

                                                      

23
 CMI is an indicator of aridity in a region based on average annual precipitation (P) and average annual PET, where CMI  

(P/PET)  1 {when PET > P} (see Alavian et al. 2009: 47-48 ). 
24

 The ranking showed that the wettest scenario is MPI ECHAM 5 A1B (CMI delta is 13 percent). 
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agree that flooding is likely to be exacerbated by climate change. Due to the importance of the Limpopo 

Basin (5927 in the model, that is south central eastern in Botswana) for water supply, the statistics 

computed for this basin are highlighted in this section. 

 

In 2030 in the Limpopo basin, the GCM models show little convergence for rainfall, with precipitation 

ranging around the 20 percent mark, with a slight bias toward less precipitation (See Figure F-5). Runoff 

changes range from more than an 100 percent increase to approximately a 40 percent decrease. 

Changes in flooding range from around a 25 percent decrease to more than an 150 percent increase, 

with a bias toward increases in flooding. Drought changes range from approximately a 40 percent 

increase to about a 20 percent decrease. While the model predictions have a wide range, there is a 

definite bias toward more droughts. Groundwater changes range from an approximate 40 percent 

decrease to a 25 percent increase, with most models showing a decrease in groundwater recharge. 

 

Figure F-5.  Box plot of average annual indicator statistics for south-central-eastern Botswana (Basin 

5927) for 2030 to 2039 

 

 

Source: Authors’ calculations – available on World Bank Climate Portal 
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In 2050 in the Limpopo basin, the models show greater agreement in decreasing precipitation, runoff, and 

groundwater (See Figure F-6). The models also show increasing droughts. In contrast, there is a large 

range of predictions for flooding, ranging from almost 40 percent decreases to more than 150 percent 

increases.  

 

Figure F-6. Box plot of average annual indicator statistics for south-central-eastern Botswana (Basin 

5927) for 2050 to 2059. 

 

 

Source: Authors’ calculations – available on World Bank Climate Portal 

 

Planners must consider the entire range of hydrologic outcomes. While there was a decline in the mean 

of most hydrologic variables, many, including runoff, projected the possibility of an increase under the 

wettest climate projection. Because a change in any of these variables could have profound impacts on 

the basin’s hydrology, water and agriculture plans must be flexible enough to thrive under multiple climate 

conditions. 
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F.5 New Indicators  from GCM Outputs 
 

To better characterize the impact of climate change on extreme events in Botswana, three additional 

indicators were developed using GCM outputs under dry and wet scenarios. The SPI and the PDSI were 

used to characterize the evolutions of droughts, and the peak flood index was used to characterize the 

evolution of floods.  

 

For both drought indexes, the driest GCM-SRES combination was used to capture the worst case 

scenario for future droughts. As it turned out, the worst-case GCM-SRES scenarios were different for SPI 

and PDSI. Accordingly, a comparison of the sensitivity of the results to the GCM selected was performed 

by running the worst case SPI GCM with PDSI, and vice versa. The results of this limited comparison 

indicate similar results, with SPI showing slightly less sensitivity to the GCM selection than PDSI. The 

main difference between SPI and PDSI is the time window of each drought threshold. The SPI must have 

consecutive months below a threshold to record a drought. Therefore severe droughts that have sporadic 

moist months break-up the drought sequence. On the other hand PDSI counts all the months below a 

certain threshold.  

 

F.5.1 SPI 

The SPI drought index was used to estimate future drought conditions using the driest GCM-SRES 

projection. This GFDLCM21-A1B projection was chosen because it represents the worst (on average) 

drought scenario according to the SPI calculation. Data from this GCM-SRES was taken for two time 

periods, 2046 to 2065 and 2081 to 2100, to measure the change in future drought frequency from the 

historic record. The map in Figure F-7 shows significant increases in the drought duration during the 

period of 2046 to 2065. However, more dramatic negative impacts are seen for the A1b scenario for the 

2080 to 2100 time period (see Figure F-8). The conclusion reached is that the durations of droughts 

indicated in this GCM simulation are expected to increase over time, especially for Northern and Central 

Botswana.
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Figure F-7.  Percentage change in the 

frequency of the 12-Month SPI (SPI12) due to 

predicted climate change in Botswana. 

GFDLCM21, A1b emissions scenario, 2046 to 

2065. 

 
Source: Authors’ calculations 

 

 

Figure F-8.  Percentage change in the 

frequency of the 12-Month SPI (SPI12) due to 

predicted climate change in Botswana, 

GFDLCM21, A1b emissions scenario, 2080 to 

2100. 

 
Source: Authors’ calculations 

 

F.5.2 PDSI 

 

The PDSI drought index was used to estimate future drought conditions under another GCM-SRES 

projection. In the case of PDSI, the INMCM30-A2 projection was chosen because it represents the worst 

(on average) drought scenario according to the PDSI calculation. In other words, as noted previously, the 

worst-case GCM for each of the two drought indicators was different. Data from this GCM was taken for 

the same two time periods, 2046 to 2065 and 2081 to 2100.  

 

The PDSI drought index is used to estimate the change in future expected drought frequency from the 

historic record. The map in Figure F-9 shows significant increases in the extreme PDSI drought during the 

period of 2046 to 2065. However, more impacts are seen for the A2 scenario for the 2081 to 2100 time 

periods (see Figure F-10). Again, it is concluded that droughts indicated in this GCM simulation are 

expected to worsen with time, especially in the Western and South-Western part of the country. At first 

glance it could seem suspect that western Botswana has both the driest and the wettest change next to 

each other but it is the result of basin weighted values and the way the map was created. Values are 

calculated for an entire catchment. In this case, the blue catchment extends well into Namibia and the 

illustrated change takes place over the whole large basin to the west. 
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Figure F-9.  Percentage change in the 

frequency of the PDSI for extreme drought 

levels, due to predicted climate change in 

Botswana, GCM inmcm30, A2 emissions 

scenario, 2046 to 2065. 

  
Source: Authors’ calculations 

 

 

 

 

Figure F-10.   Percentage change in the 

frequency of the PDSI for extreme drought 

levels, due to predicted climate change in 

Botswana, GCM inmcm30, A2 emissions 

scenario, 2081 to 2100. 

 
Source: Authors’ calculations 

 

F.5.3 Peak Flow 

Peak flow is an important feature of a hydrograph, as it determines the maximum extent of 

inundation. It is also a key feature in many engineering designs, affecting, for example, designed 

capacity of many drainage infrastructures. The SCS method
25

 was used to estimate peak runoff 

values from historic and GCM rainfall depths for watersheds in Botswana. 

 

It is apparent from the peak flow ratios calculated for the 2046 to 2065 and 2081 to 2100 periods 

that overall, peak runoff rates are increasing over time. Future peak flow exhibits some spatial 

variance: storm risks move to West and North from North East. It is also notable that the extreme 

southwest portion of Botswana in the Kalahari Desert shows some of the more significant impacts. 

These results should be reviewed with some caution as they are a result of the low historical value 

used in the denominator of the ratio, therefore very small changes in precipitation depth may result 

in very large ratios.  

 

                                                      

25
 The US Department of Agriculture Natural Resources Conservation Service (NRCS) developed a runoff estimation 

procedure commonly called the SCS method (the former name of the NRCS was the Soil Conservation Service). This 
method is based on a generalized watershed response to rainfall called a Unit Hydrograph (UH). The SCS UH is a function 
of watershed land cover (using a parameter called a Curve Number, which is an integer index of previousness, varying 
from 1 to 100), slope, and roughness.  
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F.6 Dialogue on Climate Change Impacts to Water Resources 
 

The analysis confirmed through multiple measures, over multiple temporal scales, that greater 

climatic variability over the coming decades is likely in Botswana. Therefore, climate change is 

expected to put additional pressure on the country’s water resources. Increased droughts will 

impact the subsistence and commercial agricultural sectors, while decrease in groundwater 

recharge would impact groundwater resources and vegetation, affecting primary and secondary 

land productivity and ecosystem services. Lower run-off would reduce already low safe yields from 

dams and adversely affect major tourism attractions such as the Okavango Delta.  

 

The scenario analysis of climate change and rainfall variability used two extreme scenarios (driest 

and wettest), which show that as a result of climate change: 

 

 Droughts are expected to increase in frequency and severity, particularly in the period 2080 to 

2100; the changes are largest in western and northern Botswana. The SPI and PDSI results 

show similar patterns but differ on details. 

 The peak flow analysis shows that the frequency of storms will increase in western and 

northern Botswana. 

 The analysis of climate variables shows that aridity will increase (declining CMI) and that PET 

will increase by around 5 percent.  

 According to the analysis, precipitation is likely to decrease in southern-middle-eastern 

Botswana (part of the Limpopo basin) although the frequency of flooding events is likely to 

increase as well. Over all, there is a definite bias toward increased droughts and groundwater 

recharge is likely to decline.  

 

Future growth thus seems to require more emphasis on water demand management, including 

efficient water allocation and use and reuse of wastewater, rainwater harvesting, and desalination. 

High climate variability and decreasing natural runoff will also require more water storage, greater 

efforts toward (artificial) recharge of groundwater, and greater interconnectivity between surface 

water and groundwater sources (to increase safe yields of the country’s entire water infrastructure). 

Rainfall variability effects also heighten concern over potentially negative impacts of climate 

change. The changes in peak flood in particular might have direct impacts on several aspects of 

flood damage mitigation and drainage design standards. Additional analysis of risk-mitigation is 

warranted. 

 

F.7 Platform and Consensus on Climate Adaptation  
 

The analysis was presented to the government officials in charge of finances and development 

planning, investment, water, and agriculture in December 2010. The analysis provided a common, 

fact-based background for an assessment of the impacts of climate change on water resources in 

Botswana. As a result, it became apparent that climate risks have significant implications to 

investments, operations, and management of water systems associated with the delivery of water 
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services and with managing water resources. No adaptation strategy has been agreed upon yet but 

the government is now actively seeking to identify appropriate adaptation measures, based on local 

expertise and guided by the projected variables discussed in this Annex. The implementation of any 

such measures would need to be complemented with decisions on the finer details of policy, 

namely, timing location and cost. This would likely require further assessment of the risks posed by 

climate change and comprehensive national strategies for adapting to them. 

 

The future changes to the climate of Botswana are uncertain, and the potential impacts span a 

broad range of climate possibilities. The analysis of future climate and hydrologic variables provides 

a powerful starting point for a discussion on issues that are complex and often divisive. A good 

grasp of the underlying GCM and CLIRUN-II model data is also important because gives an 

indication of how flexible adaptation plans need to be. Understanding the data also promotes an 

appreciation for the uncertainties of projecting climate change effects at basin-level and the need to 

consider a range of climate and hydrologic futures. As Botswana’s experience demonstrates, 

analysis of GCM and CLIRUN II data can help governments recognize the need to prioritize climate 

adaptability in water management. 

 

F. 8 Concluding Remarks 
 

The analysis is a first building block of what could be a more comprehensive assessment of the 

impact of climate change in Botswana. The World Bank has developed such assessments in other 

countries. Their main objective is to help decision-makers assess the risks posed by climate change 

and design national strategies for adapting to them. Once future climate outcomes (temperature, 

precipitation, droughts, floods) are modeled with extreme GCM (the biophysical assessment 

presented in this Annex), the impacts of climate change are established for selected vulnerable 

sectors (for example water supply, infrastructure, agriculture, and health in Botswana) it is possible 

to integrate such results into an economy wide model (for example a Computable General 

Equilibrium model) to identify cross-sector effects without and with adaptation investments and 

policies. In the case of Botswana, special attention needs to be given to the future of the irrigation 

sector. 
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ANNEX G: DEVELOPING A CLIMATE CHANGE ADAPTATION 

STRATEGY IN MICHOACÁN: THE ROLE OF GLOBAL 

CIRCULATION MODELS AND THE CLIRUN-II HYDROLOGIC 

MODEL 

G-1 Introduction 
 

This Annex provides an illustration of how the methodology elaborated above has been used in the 

context of assessing the impact of climate variability and change in Michoacán State, Mexico
26

. In 

the case of Michoacán additional analyses has been carried out as described below. Depending on 

the objective for the be specific analysis to be carried out, it is to be expected that additional 

analysis is required or prudent. The present annex first provides the context of Michoacán in 

relation to climate variability then a brief summary of the analysis which was carried out. 

 

G-2 Background 
 

Mexico has made climate change mitigation and adaptation a priority. It has embraced ambitious 

targets to lower emissions coupled with farsighted plans to manage and address the risks of climate 

change. There is growing recognition that without adaptation, increased rainfall variability and 

climate change may have widespread economic impacts. Central to the success of Mexico’s 

adaptation agenda is an emphasis on sustained stakeholder involvement and responsiveness to 

new information.  

 

Active participation by state governments is pivotal to Mexico’s adaptation agenda. Because 

adaptation must take place at the local level, ownership of adaptation measures by subnational 

actors is crucial. Accordingly, state governments are increasingly playing an active role in the 

design and implementation of climate risk management strategies. 

 

The State of Michoacán has committed to developing a State Climate Change Action Plan. 

Characterized by increasing variations in climate and rising temperatures, Michoacán is already 

confronting the impacts of climate change. Future climate change will add to existing uncertainties, 

with potential outcomes that span an even greater range of possibilities: more variability of future 

precipitation, flooding, and droughts. The economic costs of climate variability can be high and 

consequently, the state aims to develop an adaptation strategy that is robust enough to withstand 

different climate futures and be cost effective. The State Climate Change Action Plan will identify 

the key actions that could be taken to better prepare for a changing and uncertain climate.  

 

The complexities of responding to climate change calls for instruments that can facilitate 

prioritization of adaptation measures based on risk. The risk management approach (see Figure G-

                                                      

26
 This annex was written by Dan Shemie and Michael Jacobsen. It is based on World Bank, 2010a 
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1) applied in Michoacán combines the complexities of climate science with local expertise and 

priorities. It recognizes the intrinsic uncertainty of climate projections and provides a systematic 

protocol for simplifying and enumerating climate risks, possible impacts and responses. It deals with 

future uncertainties by testing the robustness of policy actions against different climate scenarios. 

Most significantly, it establishes participatory protocols to ensure that higher priority risks are 

identified and more effectively managed.  

 

Figure G-1.  Selected steps in risk identification, analysis, and evaluation27 

 
 

Integral to the risk management approach is the use of a robust analysis of the change to climate 

variables at the state level. Toward this end, the World Bank, together with the Government of 

Michoacán, performed an assessment of the likely climate change impacts on key sectors using 

state-of-the-science GCMs to forecast how the underlying variability in Michoacán might change. 

The results of this analysis were presented at a series of workshops, including a Strategic 

Environmental Assessment Workshop held in November 2009, and in a Climate Risk Management 

workshop, held in October 2010. The focus of the workshops and the analysis was on the effects of 

climate change on sectors at the frontlines of climate impacts: water and agriculture. 

 

The focus on water and agriculture was based on the fact that these sectors will most likely be 

impacted by climate change. Future climate projections presented at the workshops suggest that 

temperatures will continue to rise in Michoacán, much of the state will get drier, and rainfall will 

become more erratic. With a drier and more extreme future climate there is a greater imperative for 

balancing variable scarce water supplies with rapidly escalating water demands. With climate 

change, other climate events, such as those due to the El Niño-Southern Oscillation or storm 

damage that compromise yields in the agriculture sector are also projected to increase in frequency 

and intensity.  

                                                      

27
 This figure (and many of the following) is copied from World Bank, 2010a. The original source references 

have been maintained. 
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The World Bank offered technical assistance based in part on recent work including the application 

of a WBM for climate impact analysis of runoff (CLIRUN-II) at the catchment level across all World 

Bank regions. This models the behavior of hydrologic variables particularly relevant for water and 

agricultural planning and investment, including runoff, basin yield, extreme events (floods and 

droughts), and net irrigation demand. The modeled behavior of these key hydrologic variables in 

the major basins of Michoacán (see Figure G-2), as well as the underlying ensemble of GCM data 

upon which it is derived, helped in several ways to inform the State Climate Change Action Plan. 

 

Figure G-2.  The hydrologic regions and subregions in the State of Michoacán 

Source: Michoacán Hydrologic Master plan 2009. Note that the sparsely populated Balsas Basin has large storage (used 

mainly for hydropower), whereas the Lerma basin in Michoacán contains much less. 

 

G.3 Using GCM Data: Is the Single Climate Model an Outlier? 
 

To gain some understanding of climate change in Michoacán, climate projections were produced 

from the Japanese Earth Simulator model. The Earth Simulator model was chosen in preference to 

others because it is the only climate model that can produce downscaled projections at the 20  20 

km grid. Compared to the low spatial resolution of the average GCMs (289  333 km grid at latitude 

0), these downscaled projections are much closer to the scale needed for assessing climate 
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impacts on water. Additionally, the model also generates projections for the nearer term (2015 to 

2039) and produces results for soil moisture, which is vital for assessing climate impacts on 

agriculture. However, it must be stressed that reliance on a single model is potentially misleading. 

Consequently, the Earth Simulator projections were evaluated and compared with an ensemble of 

other climate models. 

 

The results suggest that the chosen model performs well and is able to replicate the actual pattern 

of observed climate with reasonable accuracy. Unfortunately, there is no agreed upon method for 

assessing the accuracy of climate models. The study used two ad hoc approaches for evaluating 

model accuracy. First, projections from the Earth Simulator for Michoacán are compared to actual 

observed climate outcomes (see Figure G-3). The limitation inherent in this approach is that the 

ability to replicate the past does not necessary reflect its ability to project the future. This is 

particularly troublesome under nonstationarity, a phenomenon implying that the future would be 

different from the past (for example, this could be due to changing parameters and relationships 

between climate variables).  

 

Figure G-3.  Actual observed climate (left) and projections from Earth Simulator (right). 

 
Source: World Bank, 2010a  

 

A second way of assuring reliability is to compare projections from the chosen model with those 

from an ensemble of other IPCC models. Widely differing results could suggest inaccurate 

projections if it is assumed that the ensemble average accurately captures true climate processes. 

The Earth Simulation model projections indicate that a warming trend is apparent across the entire 

state, ranging from 1.3 to 1.5 degrees Celsius in the next three decades.
28

 Compared with other 

parts of the world, the magnitude of the temperature change will be severe. The harshest 

temperature change will take place in the southern part of Michoacán. An identical pattern emerges 

                                                      

28
 The change in mean annual temperature is based on the comparison of the projected future average of mean annual 

temperature from 2030 to 2039 with the projected historic average of mean annual temperature from 1961 to 1990. 
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when comparing projections from the multimodel ensemble of regional scenarios. Although it is 

difficult to compare these models given that they are less spatially refined, the high level of 

correlation among projections verifies that the Earth Simulation model in not an outlier. 

 

Apart from average temperature, the magnitude of the changes in precipitation within the state does 

not appear to be excessively large, ranging from a decrease of 18 percent to an increase of 8 

percent.
29

 On average, rainfall intensity will decrease in drier areas and increase in wetter areas, 

and overall there will be a net reduction in soil moisture. However, uncertainty in the projections for 

future rainfall is far greater than for temperature. So while both the Earth Simulator model and 

ensemble projections indicate a decline in mean annual precipitation in the southeast and 

northwest part of the state, there less agreement on the timing and magnitude of this change. 

Nevertheless, the Earth Simulation model is clearly not an outlier and is therefore useful for near-

term adaptation planning purposes.  

 

G.4 GCM Data and the Range of Future Climate Variables 

 
Future projections of the potential change in climate variables like temperature, precipitation, and 

PET are useful in developing an adaptation strategy. However, as noted previously, considerable 

uncertainty is inherent to all future projections, especially future precipitation projections. Climate 

models project a wide variety of possible precipitation levels, for any given emission trajectory. 

Accordingly, to plan for the future, reliable knowledge of the minimum and maximum boundaries of 

change of climate variables is most informative. In the case of Michoacán, climate projections were 

used from models with the driest,
30

 the wettest,
31

 and the median
32

 outcomes (see Table G-1).  

 

This range of GCM projections reveal a variety of scenarios, all of which estimate that water deficits 

will likely grow in magnitude with climate change. In the best (wettest) model projections, climate 

change may result in unmet demand being held at its current levels despite a projected 8% 

increase mean annual precipitation, while in the worst (driest), the unmet demand will rise 

dramatically with a projected 18% decrease in mean annual precipitation (see Table G-1). 

 

                                                      

29
 Ibid for mean annual precipitation. 

30
 Called ipsl_cm4, this model was constructed and is maintained by the Institute Pierre Simon Laplace in France. 

31
 Called gfdl_cm2_0, this model was constructed and is maintained by the Geophysics Fluid Dynamics Laboratory at 

National Oceanic and Atmospheric Administration (US). 
32

 Called MIROC3_2-HR, this model was constructed and is maintained in a cooperative effort by Japanese public 
agencies. 
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Table G-1.  Future climate projections of the driest, wettest, and the median outcomes 

 

Michoacán’s adaptation strategy will need to consider the multitude of climate futures. Were it not 

for the limits of change to the state’s climate, revealed by the GCM projections, this task might 

otherwise be unmanageable. Unfortunately, there is little convergence among the models on other 

climate-related variables, like the timing of the rainy season; the onset of rains being an important 

determinant of yields and plant growth. This once again reflects the uncertainty of future 

precipitation. Climate data can also help estimate hydrologic variables that are more directly impact 

water and agriculture. 

 

G.5 CLIRUN-II Model Data and Range of Future Hydrologic Variables 
 

Future projections of the potential change to hydrologic variables are useful for estimating the likely 

impacts on the water and agriculture sectors. In Michoacán, climate data was entered into a 

hydrologic model, CLIRUN-II, to generate future projections at basin-level of various hydrologic 

variables. These included runoff, extreme events (floods and droughts), climate moisture index 

(aridity) and groundwater recharge. Given the uncertainly inherent to the climate projections 

themselves, it is not surprising that the model produced a wide variety of hydrologic outcomes for 

each basin (see Figure G-4). For some variables, such as flooding (q10 shown as 10 percent), 

there was little convergence of results. For others, such as the q90 shown as 90 percent there was 

greater agreement, indicating a drier future for the basin.  
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Figure G-4.  Future hydrologic projections of the driest (A2), wettest (A1b), and the median (B1) 

outcomes 

 

Source: Authors’ calculations – available on World Bank Climate Portal 

Planners must consider the entire range of results. The results illustrate that water, and agriculture 

plans must be flexible enough to thrive under multiple climate conditions.  

 

G.6 Climate and Hydrological Projections: Estimating Water and 

Agriculture Impacts. 
 

The projections for climate and hydrologic variables were presented to a wide variety of 

stakeholders from Michoacán’s water and agriculture community. Armed with this information, 

participants were able to make an assessment of the impacts, vulnerability, and ultimately 

adaptation options using the methodology described in Figure G-1. The analysis provided a 

common, fact-based background for their expert judgments. For water, this assessment focused on 

the impacts on key parameters of concern: water quantity, water quality, infrastructure, health, and 

ecosystems. For agriculture, there was focus on the core determinants of crop growth: soils, 

moisture, pests, and weeds. 

 

In both cases, a risk matrix was developed to evaluate the impacts and vulnerability. Figure G-5 

represents the matrix that was prepared for impacts on water. The color-coding represents 

likelihood of occurrence of the impact (vulnerability), with red  indicating extremely likely, dark 
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orange is very likely, orange is likely, and yellow is low. Accordingly, while climate projections 

indicate that it is extremely likely (red) that climate change will result in higher minimum 

temperature, it remains doubtful that this change would result in a decrease in water availability.  

Figure G-5. Impact risk and vulnerability matrix of climate change for water, biodiversity, and 

health. 
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G.7 Prioritizing Adaptation Actions. 

 
There was consensus that climate change would place stress on the water system and intensify 

existing problems. Appropriate adaptation responses emerged (see Figure G-6) based largely on 

local expertise and guided by the projected hydrologic variables. However, the implementation of 

any such measures would need to be complemented with decisions on the finer details of policy, 

namely, timing, location, and cost. That said, the broader policy implication is that many of the water 

adaptation measures for the future are relevant today, implying that many no regret actions exist 

that would be worth doing even without climate change. 
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Figure G-6. Adaptation to climate change for water, biodiversity, and health. 

 

It is hard to predict how climate change will impact future agricultural yields. Ultimately, it is the 

balance between rainfall and temperatures that is the key determinant of crop growth. Plants might 

respond well to higher temperatures if additional moisture can compensate for higher levels of ET. 

But eventually, higher temperatures lead to heat stress. Likewise, excessive precipitation can lead 

to water logging and damage from floods, with subsequent yield penalties. Learning to adapt to 
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such uncertain outcomes calls for flexible approaches, many of which are of the no regret variety 

(see Table G-2). 

 

Table G-2.  No regrets and climate justified actions (adaptations) for crop systems 

 
Source: World Bank, 2010a page 53. 

 

Conclusion 
 

The future climate of Michoacán is uncertain, and the potential impacts span a broad range of 

climate possibilities. The analysis of future climate and hydrologic variables combined with the risk 

matrix approach provides a powerful starting point for a stakeholder led discussion on the issues of 

climate change and adaptation.  

 

Understanding the data also promotes an appreciation for the uncertainties of projecting climate 

change effects at the basin-level and the need to consider a range of climate and hydrologic 

futures. A good grasp of the underlying GCM and CLIRUN-II model data is also important because 

it gives an indication of the needed flexibility of adaptation plan. Michoacán’s experience 

demonstrates that a risk management approach based on fact-based analysis of future climate and 

hydrologic variables can help stakeholders from move from data to decisions.  
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