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ABSTRACT 
 
 

The World Meteorological Organization (WMO) and Global Water Partnership (GWP) have 
launched a joint Integrated Drought Management Programme (IDMP) to improve monitoring and 
prevention of droughts. In the frame of this project this study focuses on identification of 
agricultural drought characteristics and elaborates a monitoring method (with application of 
remote sensing data), which could result in appropriate early warning of droughts before 
irreversible yield loss and/or quality degradation occur. The spatial decision supporting system to 
be developed will help the farmers in reducing drought risk of the different regions by plant 
specific calibrated drought indexes.  
For the investigations normalized difference vegetation index (NDVI) was used calculated from 
16 day moving average chlorophyll intensity and biomass quantity data. The study area was the 
Tisza River Basin, which is located in Central Europe within the Carpathian Basin. The results 
offer concrete identification of remote sensing and GIS data tools for agricultural drought 
monitoring and forecast, which eventually provides information on physical implementation of 
drought risk levels. As a result, five drought risk levels were developed to identify the effect of 
drought on yields: Watch, Early Warning, Warning, Alert and Catastrophe.  
In the frame of this innovation such a data link and integration, missing from decision process of 
IDMP, are established, which can facilitate the rapid spatial and temporal monitoring of 
meteorological, agricultural drought phenomena and its economic relations, increasing the time 
factors effectiveness of decision support system. This methodology will be extendable for other 
Central European countries when country specific data are available and entered into the system. 
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1. INTRODUCTION  
 
The World Meteorological Organization (WMO) and Global Water Partnership (GWP) have 
launched a joint Integrated Drought Management Programme (IDMP) in March of 2013, to 
improve monitoring and prevention of one of the world’s greatest natural hazards. GWP is 
responding to the climate change challenge through a portfolio of programmes and projects aimed 
at building climate resilience through better water management (Kindler and Thalmeinerova, 
2012). In the frame of GWP DEE IDMP, this study focuses on identification of agricultural 
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drought characteristics and elaborate and signaling agroinformatic method, which could result in 
appropriate early warning of droughts before irreversible yield loss occur. 
 
Meteorological drought indices indicate the effect of weather conditions (most commonly the 
temperature and precipitation) on the intensity of drought. The hydrological drought is associated 
with the extreme reduction of water resources, while agricultural drought indicates crop loss or 
vegetation water stress condition (Niemeyer, 2008). Despite the fact that there is a close quality 
connection among the harmful level of all three indicators, the numerical scale of the relationships 
among them is unclear. Thus, different areas or the same area with different forms of drought 
cannot be compared. For example, it cannot be stated from the evaluation of meteorological 
drought standardized precipitation index (SPI) (McKee et al., 1993) values of a river basin, how 
many tonnes of maize will be lost during a given forecasting period. However, the expected rate 
of yield loss would be very important information for the planned intervention in terms of time 
and cost.  
 
Over the past decade, the number of Earth observation satellites increased by several orders of 
magnitude and the spectral and spatial resolution of data they collect improved. Multispectral 
remote sensing technology is widely used in agriculture and is appropriate for vegetation analysis 
(Polder & van der Heijden, 2001; Sabins, 1997).Vegetation has characteristic spectra, often 
showing characteristic absorption maxima or minima at particular wavelengths. Most vegetation 
indices are based on the sharp increase in reflectance from vegetation that occurs around 700 nm 
(the red-edge), a change that is characteristic of green vegetation and not found for most other 
natural surfaces that show relatively slow changes of reflectance with wavelength over this region 
(Jones and Vaughan, 2010). In particular, since 2002 new opportunities for better data for 
calculations can be gained from the MODIS Aqua and Terra satellites which provide free 36-band 
number, with 1 day repeating cycle and 250 to 500 m pixel size time series data sets (Tucker, 
1985). For agricultural water management today, remote sensing time series analysis (RS- TSA) 
is one of most important solutions for measuring agricultural droughts and its effects (Tamás et 
al., 2009). Technologically, the broad application of remote sensing (RS) has few barriers, 
although the accumulated knowledge on RS is slowly being implemented into practice. While it is 
possible to continuously gather spectral physical data on plant water content, the direct 
interpretation of these data is not feasible practical for farmers. Using field or other meteorological 
reference data for calibration of remotely sensed spectral data, real plant water demand can be 
quickly and effectively mapped in both space and time on the surface (Lei and Peters, 2003). 
 
The aim of our study was to develop a process, which could provide information for estimating 
the relevant drought indexes and crop losses more effectively, and to help fill the knowledge gap 
in this field, in order to develop agricultural drought-related decision parameters and applications 
in practice from spectral MODIS satellite time series datasets. 
 

2.  MATERIAL AND METHODS 
 
Our study focused on determination of drought effects on watersheds from remote sensed spectral 
data. For the investigations normalized difference vegetation index (MODIS NDVI) was used 
calculated from 16 day moving average chlorophyll intensity and biomass quantity data. The study 
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area was the lowland part of the Tisza River Basin, which is located in Central Europe within the 
Carpathian Basin. Hydrologically the Carpathian Basin is one of the most closed basins on Earth 
and the investigated lowland has semi-arid to arid character. In this region there is intensive 
agricultural activity where the ratio of arable land is 72%. 
 
In the case of data processing and transformations five major steps should be done in order to 
make the NDVI calibration:  
• Reprojection of MODIS data 
• Mask building for data extraction 
• Extraction of MODIS NDVI time series by masks 
• Acquiring data matrix from NDVI images 
• Normalization of extracted NDVI data matrix and yield data 
 
After reprojection of the MODIS NDVI data time series, a complex models for mask building and 
data extraction were established in order to select and delineate arable lands from the whole 
Charpathian basin. The reason for selecting the concerned sites was to eliminate the disturbing 
effect of other landuse categories on NDVI values. ArcGIS 10.2 software was used to create 
models for the data processing of NDVI images. Boolean mask images were produced for the 
selection of plain fields and arable lands with which the MODIS data set can be extracted. The 
Boolean masks were made based on the CORINE Land Cover (CLC2006) and SRTM 90 m DEM 
data. After creating these masks, a set of models were created for the extraction of MODIS NDVI 
datasets.  
 
The models resulted NDVI images, representing arable lands on plains in a certain region. On the 
other hand the extracted NDVI images cannot be used directly for maize and winter wheat yield 
loss calibration, because the images represent arable lands and not the production area of the maize 
and wheat. Therefore further data was needed concerning the production area. Since there is no 
available data for the exact localization of the production area of maize and wheat, further mask 
models were built to separate the winter grains (wheat) and maize from each other (Figure 1.).  

 
Figure 1. ArcGIS model for creating mask and extraction of wheat and maize site at a ROI 
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The bases of the mask models was that the winter wheat has ground cover in March, and fields 
dedicated to maize production is still bare, since the appropriate date for maize seeding is the 
middle of April on the Great Plain. Concerning crop rotation, NDVI classification process was 
made for every year, based on the NDVI images representing March, in our case the 81st day of 
the year. In the case of wheat, sites with 0.35-1 NDVI values were classified to wheat, and sites 
with 0-0.35 NDVI value were classified to maize. After the classification, two masks were 
obtained for one year, one for wheat, one for maize. After that these masks were used to extract 
the sites of a given crop from the county-arable land mask. County-arable land mask represents 
the arable lands of a certain region. As a result, wheat and maize mask were produced for every 
year for a certain county. 
 
The masks for county wheat/maize sites were then used to extract the MODIS NDVI images to 
get NDVI data for the different crop sites. For masking, new models were built for each years 
(Figure 2.). The model describes the extraction processes of the MODIS NDVI images for a certain 
year. This model had to be built for every year and run for maize and wheat sites county by county. 

 
Figure 2. ArcGIS model for extraction process of a certain crop-county mask from MODIS 

NDVI images 
 
After extractions the main aim was to create the data matrix of the mean NDVI values. The mean 
NDVI values were gathered from every extracted NDVI images, from the whole timescale 
concerning the ten examined counties (7 counties in Hungary, 2 counties in Slovakia and 1 county 
in Romania). The collection of mean NDVI values were made in ArcGIS 10.2 software ambient 
as well, by using band collection statistics tools. The data matrix of the mean NDVI values was 
the basis of the NDVI image calibration. 
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Next issue was to harmonize NDVI and yield data (t/ha) which was easily solved by the 
normalization of the datasets. In this way the two datasets became dimensionless between 0-1 
values, so that statistics can be made. Normalization was made as follows: 
 
Normalized value = (Value – Valuemin)/(Valuemax – Valuemin) 
 
where in the case of NDVI images the subscripts max and min refer to the values for dense 
vegetation and for the lowest vegetation cover. During normalization maximum and minimum 
values were chosen from the whole NDVI dataset regardless regions of interest. This provides us 
data uniformity for the whole river basin. 
 

3.  RESULTS AND DISCUSSION 
 

As it was described earlier NDVI based drought risk levels were calibrated by yield and 
meteorological data. As well as MODIS NDVI time series dataset, yield data is also available from 
2000 – 2012. Concerning the yield dataset, in the case of maize and wheat severe yield loss were 
detected in 2000, 2002, 2003, 2007, and 2012, remarkable yield amount were detected in 2001, 
2005, 2006, and average in 2010 and 2011 (Figure 3.).  
 
These findings are strongly related to the SPI and meteorological data, except for year 2010, when 
extreme amount of precipitation (900-1300 mm) fell on the plains of the Tisza river basin and due 
to the surplus water occurrences and diseases the quantity of the yields remained average. 
Furthermore the weather contributed to the spread of weed coverage.  

 
Figure 3. Yield changes of maize, wheat, 2000-2012 (based on KSH and INSSE data) 

 
Beside the fluctuation of yield, yield differences also detected between counties. Regardless the 
drought situation the largest maize and wheat yield production levels reveal generally in Hajdú-
Bihar and Békés counties out of the examined counties, while Jász-Nagykun-Szolnok, Heves and 
Bihor (Romania) counties showed the worst yield results. The reason for this is the differences in 
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soil characteristics. Hajdú and Békés counties have the highest rates of chernozem soils with very 
good water management characteristics, while Heves and Szolnok counties have relatively more 
clay and loamy clay soils, which are very sensitive to drought. 

 
The calibration of NDVI dataset were carried out by calculating correlation and regression between 
yield and NDVI datasets. Since we had one yield value for one year for each county, but several 
mean NDVI values could be revealed within a year, first the collected and normalized NDVI 
datasets had to be grouped. The basis of the grouping was the date within a year, than all the data 
were arranged to one matrix with data of 13 year. The matrix contained variables for normalized 
NDVI data in certain dates (the number of variables were different for each plant species based on 
the vegetation period of the certain crop or fruit) and one variable for the yield. The reason for 
establishing these matrices was to select those significant normalized NDVI time scale or interval, 
which can be used for reliable yield or yield loss forecasting. Based on the results significant 
correlation were found between normalized NDVI values and maize yield from the middle of June, 
to the end of August, including the most drought sensitive blooming period (July) of this crop. In 
the case of wheat, only June is found to be reliable for yield prediction and forecasting (Table 1.). 
These results also suggest, that the effect of soil on yield through the NDVI values appears, if it is 
not the case, significant correlation cannot be detected at all. On the other hand the fair and 
moderate correlation can also be explained by the effect of soil. Since we have yield data for 
counties, and not for catchments or polygons of soil types, yield data represents the effect of 
various soil type at the same time on the county yield data. The effect of the rate of the major soil 
type on yield can be detectable.  

 
Table 1. Correlation between normalized NDVI values and yield in the case of wheat and maize  

 9-Jun 25-Jun 11-Jul 27-Jul 12-Aug 28-Aug 
Maize  0.65* 0.70* 0.69* 0.68* 0.54* 
Wheat 0.51* 0.63*  

*significant (p<0.05) 
 
Based on the results of linear regressions, yield and descriptive statistics of normalized NDVI, 
reference spectral curves were generated in order to determine the Watch, Early warning, Warning, 
Alert and Catastrophe levels of NDVI (Figure 4.): 
1. Watch: When plant water stress is observed in sensitive phenological phases 
2. Early Warning: When relevant plant water stress is observed. The available soil moisture 
is close to critical, and it is suggested for farmers to start preparation of intervention. Predicted 
potential yield loss is up to 10%.  
3. Warning: When plant stress translates into significant biomass damage, and there is time 
to start the intervention actions. Potential yield loss is up to 20%. 
4. Alert: When farmers expect irreversible vegetation damage with real negative profit, and 
they have to consider to give up additional cultivation actions in crop production in that actual 
vegetation period. Potential yield loss is up to 30%. 
5. Catastrophe: When serious damages and profit loss mitigation is necessary. Potential yield 
loss is up to 40%. 
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After generating these reference curves, the normalized NDVI was back scaled and transformed 
into real NDVI values. As a result of this process, concrete NDVI levels and thresholds could be 
calculated for yield and yield loss. 

 
Figure 4. Drought risk and signaling NDVI levels for maize and wheat 

 
It has to be mentioned, that the genetic potential of different species or hybrids can highly influence 
yields. Earlier species of maize has less yield than those which mature in autumn. However, it has 
to take into consideration, that later ripening species or hybrids enhance the risk of yield loss, 
because their blooming period is directly in the middle of the most drought risk affected summer 
months. 
 
There is also a need to understand that why significant correlation can only be found in the middle 
of and the final phenological phase of the crops. The answer is in the recover ability of plants. The 
later the droughts appear, the less is the possibility of the recovery of a certain crop. For example 
if the emergence of wheat are weak or there is a period of drought in early spring with wet autumn, 
there is still a possibility to have good wheat yield, if there was enough rains in winter or in the e 
second half of spring.  
 
After calibrating NDVI by yield, the validation was made by meteorological data as well. Higher 
yearly mean temperature and less precipitation cause an earlier vegetation cycle. Concerning this 
and regarding climate change, we can expect lower yearly average NDVI values in the future for 
Tisza river basin. The large NDVI values tend to occur in wet conditions, while low NDVI values 
imply warm-dry climate conditions. This phenomenon regarding to the NDVI values is mainly 
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observable in August: i.e. average year, excess water and/or drought hazarded extreme year. From 
the agricultural point of view and because of being one of the input data of several drought indices, 
such as SPI, soil water content were used to calibrate NDVI data. According to the results, 
moderate significant correlation (r2=0.62 p=0.008) was found between available soil water content 
and NDVI values. These moderate values highly due to the origin of soil moisture data, which 
were based on soil samples. Thus these point data cannot represent properly a site, or larger, 
heterogeneous area. 
 
This new drought risk monitoring and forecasting method is an improvement for hydrologists, 
meteorologists and farmers, allowing to set up a complex drought monitoring system, where for a 
given period and respective catchment area the expected yield loss can be predicted, and the role 
of vegetation in the hydrological cycle could be more precisely quantified. Based on the results 
more water-saving agricultural land use alternatives could be planned on drought areas. 
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