

DRIN NEXUS ASSESSMENT

WATER-ENERGY MODELING

6th July 2021

<u>Polytechnic University of Tirana:</u> Klodian Zaimi

KTH, Royal Institute of Technology:

Dr. Francesco Gardumi Dr. Vignesh Sridharan **Youssef Almulla** Emir Fejzic

In this presentation ...

- Part1:
 - Overview of energy systems modeling and various modeling tools
 - Introduction to OSeMOSYS, its key characteristics, inputs and outputs.
- Part2:
 - Overview of the Drin Integrated Water-Energy model
 - The main scenarios and their key assumptions.
 - Introduction to the Hands-on exercise

Part1: Energy systems modeling and OSeMOSYS

Energy system and planning

The energy trilemma in policy

Sustainability

- What needs to be done to supply modern energy sources to remote areas?
- What needs to be done to increase the share of renewable technologies?

Security

- Should electricity import be allowed?
- Should existing nuclear facilities be closed down? Affordability
- Can an energy conservation program help in reducing cost of energy supply?

Picture source: lamme Ubeyou, photo, license under CC 0

Modeling tools are needed to help decision makers and investors understand the potential impacts of decisions aimed to address such questions.

Energy modelling tools

Bottom-up and topdown tools

Energy modelling tools

Why use optimization tools?

- To identify least-cost energy systems
- To identify cost-effective responses to restrictions on emissions
- To evaluate new technologies and priorities for R&D
- To evaluate the effects of regulations, taxes, and subsidies
- To project future greenhouse gas emissions
- **To estimate** the value of regional cooperation

- Investigate scenarios (possible futures);
- Explore alternatives to business as usual practices;
- Inform decisions (policy and strategic planning)

Energy modelling tools

Scope

OSeMOSYS What is it?

www.osemosys.org

Model generator converting the energy system structure represented by equations into a matrix to be solved by specific solvers

- Linear optimization
- Paradigm comparable to MESSAGE and TIMES
- Freely available and open source
- Dynamic
- (Usually) Perfect foresight
- (Usually) Deterministic

OSeMOSYS

What does it do?

- It determines the energy system configuration with the minimum total discounted cost for a time domain of decades, <u>constrained by</u>:
- Demand for commodity (e.g., electricity, heating, cooling, km-passengers, etc.) that needs to be met
- Available technologies and their techno-economic characteristics
- Emission taxations and generation targets (e.g., renewables)
- Other constraints (e.g., ramping capability, availability of resources, investment decisions, etc.)

Basics of OSeMOSYS Structure

Sets	Input data	Output variables
(Components)	(Parameters)	(Results)
 REGION YEAR COMMODITY TECHNOLOGY 	 Historical capacity Annual Demand Load Efficiency Capital, fixed, variable costs Emission Activity Ratio Availability Factors 	 New Capacity Total Annual Production by Technology Annual Emissions Discounted Costs Model Period Cost

Basics of OSeMOSYS

Set: Technology

- <u>A technology can be used to:</u>
- Supply or produce a resource
- (e.g., biomass production, natural gas imports)
- Convert one commodity into another
- (e.g., conversion of natural gas to electricity, electricity to light)
- <u>A technology can represent:</u>
- A single process/plant or
- A group of processes/plants with similar characteristics

Basics of OSeMOSYS

Set: Commodity

- Commodities can be used to represent:
- Flows between technologies
- (e.g., electricity, natural gas, coal)
- Final demands
- (e.g., demand for lighting, cooling, heat, or clean water)

OSeMOSYS

Interpreting its results

- The results provide <u>insights</u> on questions such as:
- Which technologies are phasing out? By when?
- What are the optimal investments in new technologies to meet the demand in the future? When is it best to invest?
- What are the key generation technologies in the total energy mix?
- What costs will the energy system incur?

OSeMOSYS Interpreting its results

Picture source: Open Energy system Models, image, license under CC-BY-SA 4.0

OSeMOSYS Use in CLEWs models

- Minimize:
- Total system cost
- Over a given time period (e.g., 2020 – 2050)
- Subject to a set of constraints (e.g., demand requirements, resource limits)

OSeMOSYS applications What

- TEMBA The Energy Model Base for Africa. Link
- IRENA African Power Pools: Planning and Prospects of Renewable Energy.
- IEA WEO 2014 Africa Energy Outlook.
- World Bank Enhancing the Climate Resilience of African Infrastructure. Link
- Among the UN Modelling Tools for Sustainable Development. Link
- Used by UNECE for assessment of water-energy cooperation benefits in transboundary river basins. <u>Link</u>
- Used by UNDP, UNDESA in CLEWs technical capacity development programmes for update of Nationally Determined Contributions

Part2: Drin Integrated Water-Energy model

WHAT WE ARE TRYING TO DO?

Aim:

To quantify the costs and benefits of shifting to a "flood-smart", cooperative hydropower operation regime along and between the two hydropower cascades in the Drin basin.

How? (Methodology)

* **Panta Rhei: a** Hydrological Model for the Drin Basin.

* OSeMOSYS: Open Source energy MOdeling SYStem.

Panta Rhei: Hydrological model

- Application of the hydrological model in around 20 000 km2.
- The model outputs are: rainfall(mm) distribution, ETP(mm),
 Volume(m3), Average discharge(m3/s)

The number of hydrometeorological stations with available data in the tables below:

Sub-basin	Discharge	Water level	Storage elevation curve	Cross- sections	Rating curve
Albania	15	12	1	n.a.	n.a.
Montenegro	5	9	n.a.	n.a.	n.a.
Macedonia	6	6	2	.5	n.a.
Kosovo	15	17	n.a.	11	n.a.

Sub-basin	Precipi-	Air temp-	Snow	Sunshine	Global	Relative	Wind
	tation	erature		duration	radiation	humidity	
Albania	31	28	1	4	1	n.a.	n.a.
Montenegro	11	2	1	2	2	2	2
Macedonia	10	4	10	3	n.a.	3	4
Kosovo	2	3	1	n.a.	n.a.	3	3

n.a. time series data are not available.

OSeMOSYS: Energy model

* In addition to the above, all power plants are classified into (inside Drin and Outside Drin).

SCHEMATIC REPRESENTATION OF THE DRIN RIVER CASCADES

Change in water availability (Panta Rhei) Change in Electricity generation (OSeMOSYS)

Reference Scenario (RF): Key assumptions

- Represents the current situation in the four countries:
 Albania, North Macedonia, Montenegro and Kosovo.
- Flow: the average discharge in the river segments based on historical data from 2001-2010.
- Temporal resolution: weekly representation (52 weeks), for the period (2020-2050).
- Renewable Capacity factors: are based on hourly data* and separated for inside and outside Drin basin.
- Future investments (hydro, solar, wind): are considered as follows:
 - Confirmed projects: are forced into the model
 - Projects with no commissioning dates: are allowed as optional capacity investments.
 - Additionally: the max cap on solar and wind are gradually relaxed after 2030.

Hourly Average Discharge in all catchments (Nov 2001 - Oct 2010)

Reference Scenario (RF): Key assumptions

- Electricity trade: is modelled in a simplified manner due to lack of data (volumes and prices). One export and one import technology for each country.
- An upper limit on imports for each country was set based on historical records (2011-2018).
- Similar approach was used for all other scenarios.

Source: https://www.eqmagpro.com/

Climate Change scenario (CC):

Flow: based on two sets of projections:

- ✤2025: with avg (-3%) change in precipitation.
- ✤2050: with avg (-6%) change in precipitation.
- Iinear decline in water flow assumed between (2021-2025) and (2026-2050).
- Changes implemented to all 'catchments' and upstream river segments.
- Not included: annual variability in water flow due to climate change.

New Dam - Skavica:

Skavica	Data
Capacity (in MW)	196
Investment cost	EUR 500 mln
Reservoir size (in Mm3)	2300
Installation year	2025
Buffer zone area (masl)	441
Spillway capacity	2800
Number of turbines	2
Flow in each pentock in (m3/sec)	87

Flood Protection (FP) scenario:

- In this scenario we explore the impact of increasing the buffer volume in certain reservoirs on
 - Electricity generation from HPPs
 - Flood area downstream and flood damage.
- Two reservoirs were chosen (one in each country) to study this scenario:
 - Spilje (N.M): 506 MCM
 - Fierza (AL): 2350 MCM
- Sensitivity analysis: increasing the buffer volume by
 - 5%
 - 10%
 - 15%
 - 20%
- Changes were applied in the wet season (Oct-May)

Flood Protection (FP) scenario:

additional_buffer(MCM)

Additional buffer volume (MCM) in Spilje

■ 5%_additional_buffer(MCM)

Changes in the water level (masl) under different rules

month	hist_level (m)	level (m) +5% buffer	level (m) +20% buffer	Diff in m (+5%)	Diff in m (+20%)
1	569	566.3	564.7	2.7	4.3
2	566	564	562.2	2	3.8
3	567	564.7	563	2.3	4
4	570	567.1	565.7	2.9	4.3
5	576	576	576	0	0
6	578	578	578	0	0
7	576	576	576	0	0
8	575	575	575	0	0
9	572	572	572	0	0
10	570	567.1	565.7	2.9	4.3
11	568	565.5	563.9	2.5	4.1
12	569	566.3	564.7	2.7	4.3

Flood Protection (FP) scenario: Fierza

Additional buffer volume (MCM) in Fierza

Change in water level (masl) under different rules

month	hist_level (m)	5%_level (m)	20%_level (m)	Diff in m (5% level)	Diff in m (20% level)
1	279	278.5	275	0.5	4.2
2	276	274.9	270	1.1	5.8
3	280	279.7	276	0.3	3.8
4	285	285.3	283	-0.3	1.7
5	290	290	290	0	0
6	296	296	296	0	0
7	293	293	293	0	0
8	286	286	286	0	0
9	275	275	275	0	0
10	272	270.1	264	1.9	7.8
11	276	274.9	270	1.1	5.8
12	279	278.5	275	0.5	4.2

Energy Optimization (EO) scenario: Fierza

 Increasing the storage level in Fierza dam to the maximum allowed level in the regulations.

Month	hist_level(m)	New_level(m)	diff(m)
1	279	290	11
2	276	290	14
3	280	292	12
4	285	296	11
5	290	296	6
6	296	296	0
7	293	296	3
8	286	296	10
9	275	296	21
10	272	290	18
11	276	290	14
12	279	290	11

Insights can be driven at:

• The Basin Level

2 500

Change in Electricity Generation (GWh) in Albanian HPPs - Ref and CC scenarios

• The National Level

AL-Power Generation (Detail)

Hands-on exercise:

- In the breakout groups,
- Based on the insights shared in today's presentations, your valuable knowledge in the region and the insights shared in the (Drin_CB.html) file; we would like you to work with your team and answer (1-3) of the questions shared in the (Drin_CB.html) file.
- Group discussion: 20-25 min.
- Report back in plenary: 10-15 min.
- Three groups:
 - Groups1 and 2: Albania
 - Plenary : North Macedonia

Hands-on exercise:

#	Group 1	Group 2	Plenary
1	Albi Islami	Eblerta Ajeti	Toni Markoski
2	Euglert Beshello	Aleksandra Dorri	Slavko Milevski
3	Fatjon Zekaj	Djana Bejko	Marjan Glavinceski
4	Elgi Haxhiraj	Elio Voshtina	Vignesh Sridharan
5	Elton Radheshi	Arbesa Kamberi	
6	Enerida Markokaj	Orland Muca	
7	Artur Mustafaraj	Eriona Gega	
8	Jonida Rika	Alban Doko	
9	Fationa Sinojmeri	Francesco Gardumi	
10	Youssef Almulla		

DRIN NEXUS ASSESSMENT

WATER-ENERGY MODELING

6th July 2021

Polytechnic University of Tirana:

Klodian Zaimi

KTH, Royal Institute of Technology:

Dr. Francesco Gardumi Dr. Vignesh Sridharan **Youssef Almulla** Emir Fejzic