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Towards establishing rainfall thresholds for a real-time
landslide early warning system in Sikkim, India

Abstract Sikkim, one of the Northeastern states of India, is a
famous tourism spot in the Himalayas with dynamic population
density. This mountainous area receives heavy rainfall and is well
known for frequent shallow landslides, especially, Chandmari,
which is a village, situated in Gangtok area in East Sikkim. Even
though it is well known that rainfall and landslides are correlated,
Sikkim lacks a well-established landslide early warning system.
Such a system is important in this region because it is one of the
highest landslide-prone areas in India. The current research at-
tempts to establish rainfall thresholds as part of developing an
efficient landslide early warning system for this region. The rain-
fall thresholds for landslides are derived based on the daily rainfall
data available from India Meteorological Department (IMD) for
six stations in Sikkim. Analysis of daily rainfall data and landslide
events in this area between the year 1990 and 2017 is performed.
An intensity–duration (I–D)-based regional rainfall threshold is
derived as I = 43.26 D−0.78 (I = rainfall intensity in mm/day and
D = duration in days) for the rainfall-triggered landslides in Sik-
kim region and a local threshold of I = 100 D−.92 was developed for
the Gangtok area. Furthermore, the influence of antecedent rain-
fall in landslide initiation is explored by considering the daily, 3-
day, 5-day, 7-day, and 20-day cumulative rainfall values associated
with landslides. The proposed threshold equations and study of
the effect of antecedent rainfall on landslides are intended to aid in
enhancing the real-time landslide early warning system (R-LEWS)
being developed for Sikkim.

Keywords Antecedent rainfall . Empirical
threshold . Landslides . Rainfall thresholds . Real-time landslide
early warning system (R-LEWS)

Introduction
Timely warning of landslides can help in evacuating people and
thereby reduce the extent of loss of lives which they cause. How-
ever, the complex meteo-hydro-geological interactions, which trig-
ger a landslide, are not always exactly understood. This makes the
implementation of a landslide early warning system (EWS) diffi-
cult. An EWS involves establishment and maintenance of four of
its components, namely design, monitoring, forecasting, and edu-
cation as detailed by Intrieri et al. (2013). In such an EWS, rainfall
threshold is a component that is highly significant. The rainfall
thresholds depend upon many factors like the climatic, geological,
and land use patterns of the region of interest. Accordingly, dif-
ferent categories of rainfall threshold equations exist in literature
(Guzzetti et al. 2007; Segoni et al. 2018a).

For landslides that are induced by rain, a threshold is indicated
by the quantity of rainfall that most likely results in a landslide.
Rainfall thresholds can be categorized into two main broad cate-
gories: physical thresholds and empirical thresholds (Guzzetti
et al. 2007; Aleotti 2004; Wieczorek and Glade 2005). The initiation
of landslides is influenced by the morphological, lithological,

hydrological, and soil characteristics of a location and hence the
development of a physical threshold requires detailed information
on all the above (Guzzetti et al. 2007; Segoni et al. 2018a). To
formulate a physical threshold, the impact of rainfall in causing slope
instability is majorly established using physically based models inte-
grated with hydrological models (Montgomery and Dietrich 1994;
van Westen and Terlien 1996; Crosta 1998; Iverson 2000; Jakob and
Weatherly 2003; Godt et al. 2008; Baum et al. 2010). Recently, various
approaches have been proposed to develop the physical thresholds
for the landslide prediction by linking the rainfall pattern with soil
properties, unsaturated conditions of soil, geotechnical, and hydro-
logical factors (Salciarini and Tamagnini 2015; Wu et al. 2015; Arnone
et al. 2016; Hsu et al. 2018; Reder et al. 2018; Salvatici et al. 2018).
Empirical rainfall thresholds are based on rainfall events, which have
caused landslides. Rainfall thresholds are usually defined on an
empirical basis (Corominas 2000; Crosta and Frattini 2001; Aleotti
2004; Wieczorek and Glade 2005; Brunetti 2010).

The empirical threshold is the rainfall value which, when
reached or exceeded, is likely to trigger landslides (Reichenbach
et al. 1998). Based on the available rainfall observations, empirical
thresholds are divided into three. They are (1) thresholds that
combine rainfall for particular landslides, (2) thresholds that are
based on the antecedent rainfall conditions (Aleotti 2004), and (3)
other thresholds, incorporating hydrological thresholds (Guzzetti
et al. 2007; Kanungo and Sharma 2014; Mathew et al. 2014). The
empirical rainfall threshold obtained from individual or multiple
rainfall events or various precipitation parameters can be further
subcategorized into intensity–duration (I-D) thresholds, rainfall
event–duration (E-D) thresholds, and rainfall event–intensity (E-I)
thresholds (Guzzetti et al. 2007, http://rainfallthresholds.irpi.cnr.it/
threshold_info.htm, accessed 8 May 2019). These threshold types
can further be subdivided into global, regional, or local thresholds
based on the extent of the geographical area under consideration.

A global threshold explains a general (“worldwide”) minimum
level below which landslides do not occur, independent of local
morphological, lithological, and land-use conditions and of local
or regional rainfall pattern and history. The main examples for
global thresholds are Caine (1980), Innes (1983), Crosta and
Frattini (2001), Clarizia et al. (1996), Cannon and Gartner (2005),
Hong and Adler (2008), and Guzzetti et al. (2008). Regional
thresholds are established in areas of thousands of square kilome-
ters in area or more. These may be developed for the various
regions within a country or for different countries, which have
similar geographic and climatic characteristics. A number of re-
gional threshold models exist in literature (Cannon 1985; Ceriani
1992; Larsen and Simon 1993; Aleotti 2004; Lagomarsino et al. 2015;
Ma et al. 2015; Rosi et al. 2016; Althuwaynee et al. 2018; Vaz et al.
2018; Pradhan et al. 2018). Local thresholds are based on the local
climatic system and geomorphological setting. It is appropriate for
one particular landslide or for groups of landslides in an area. The
examples for local rainfall thresholds are Cancelli (1985),
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Wieczorek (1987), Wieczorek et al. (2000), Aleotti et al. (2002),
Giannecchini (2005 ), Zêzere et al. (2005), Kanungo and Sharma
(2014), Chung et al. (2017), Gao et al. (2018), Pradhan (2019),
Irawan et al. (2019), and Rosi et al. (2019).

The rainfall thresholds established before 2008 were reviewed
by Guzzetti et al. (2007, 2008) on the basis of type of threshold
model, extend of threshold defined, and type of landslides. Later,
Segoni et al. (2018a) carried out an extensive study on all the
rainfall thresholds defined after 2008 all around the world. The
review includes the details of different methodologies of threshold
definition, application, and various validation techniques used.
The work also provided information about the best practices, the
most effective solutions used, and the major drawbacks. According
to this paper, Hong and Adler (2008) and Guzzetti et al. (2008)
published two global scale thresholds in 2008, which is considered
as the recent work in the global scale category wherein the
former had developed a satellite-based rainfall intensity–
duration threshold. Guzzetti et al. (2008) proposed a global rainfall
threshold from the rainfall landslide database prepared through a
thorough literature search, including international journals, con-
ference proceedings, and event and technical reports. The proba-
bility approach was first proposed for defining the threshold by
Guzzetti et al. (2008). Among the total rainfall thresholds pro-
posed, majority of the works are at regional and local scales
(Segoni et al. 2018a). Lagomarsino et al. (2015), Ma et al. (2015),
Rosi et al. (2016), Althuwaynee et al. (2018) Vaz et al. (2018), and
Pradhan (2019) are some of the recent established works in re-
gional scale. Lagomarsino et al. (2015), Ma et al. (2015), and Rosi
et al. (2016) have partitioned the study area into subzones that
have homogeneous geomorphological characteristics and
proposed a specific threshold for each of them in order to
increase the reliability and performance of these thresholds. The
reliability of these rainfall thresholds is evaluated using various
statistical indices such as back analyses, contingency tables, and
skill scores. Vaz et al. (2018) also used several statistical parameters
in order to analyze the effectiveness of the rainfall thresholds
proposed for the Lisbon region. Althuwaynee et al. (2018) con-
ducted a study on susceptible regions of northern Turkey and
proposed different types of rainfall thresholds such as ED, ID,
and antecedent thresholds for selected periods (3, 5, 10, 15, and
30 days) and validated them by calculating the reliability index.
Among the different threshold types that they proposed, the ID
threshold provided the optimal performance. For the local scale,
Kanungo and Sharma (2014) proposed a threshold for Chamoli-
Joshimath region in India, using some statistical methods whereas
Chung et al. (2017) adopted a deterministic-based model to esti-
mate the local rainfall thresholds for a deep-seated landslide in
Taipingshan villa, Taiwan. Gao et al. (2018) proposed the local
rainfall intensity–duration thresholds for Hong Kong area, which
calibrated three levels of landslide magnitudes for both open
hillslope landslides, and channelized debris flows. Recently,
Irawan et al. (2019) defined a new empirical rainfall threshold
combined with antecedent soil moisture indexes for Banjarmangu
district, Indonesia. In addition, Segoni et al. (2018b) highlighted
the importance of hydrological bases to empirical rainfall thresh-
olds by integrating mean soil moisture values for improving the
landslide EWS in Emilia Romagna Region (Italy).

In India, the impacts of landslides are experienced over at least
15% of its land area (Kanungo and Sharma 2014). The Himalayan

region is particularly prone to landslides, which result in signifi-
cant loss to lives and properties. Sikkim is one of the northeastern
states of India, located in the eastern Himalayas and covers
around 40% of landslide-prone areas in the country (Dikshit and
Satyam 2017). The higher number of landslides occurring over this
region coupled with its complex orography and socio-economic
conditions makes it a vital region for implementing a landslide
EWS. As explained earlier, one of the crucial initial steps in the
EWS implementation is the establishment of a rainfall threshold
and the development of such a threshold is the focus of the current
study.

Over the Himalayan region, a few studies have explored robust
relationships between rainfall and landslide initiation. Dahal and
Hasegawa ( 2008) address the rainfall threshold relation for Nepal
by fitting the rainfall intensity–duration threshold curve for
landsliding as I = 73.90 D−0.79 by using the rainfall data and land-
slide events from 1951 to 2006. They establish the normalized
rainfall intensity–duration relationships and landslide initiation
thresholds from the normalized rainfall intensity data with respect
to mean annual precipitation (MAP) as an index. Rainfall thresh-
olds for Garhwal region of Himalayas were explored by Mathew
et al. (2014), Kanungo and Sharma (2014), and Ziegler et al. (2017).
Mathew et al. (2014) derived the rainfall threshold of Garhwal
Himalaya region by establishing the log–log plot of duration and
the maximum rainfall intensity that triggered landslides to the
duration 1998–2004 and the threshold equation is expressed as
I = 58.7 D−1.12. Similar to Dahal and Hasegawa (2008), Mathew
et al. (2014) also derived a normalized intensity–duration relation
using the mean annual precipitation. Kanungo and Sharma (2014)
attempted to derive the local rainfall thresholds for landslides in
and around Chamoli-Joshimath region of the Garhwal Himalayas,
based on daily rainfall data. The rainfall data and landslide events
of 2009 to 2012 were taken to yield an empirical intensity–duration
threshold by fitting lower boundary of the landslide triggering
rainfall events and the threshold obtained was I = 1.82 D−0.23.
Kumar et al. (2017) have analyzed landslides due to extreme
rainfall events in Jammu and Kashmir region of Himalayas. The
rainfall threshold for Kalimpong region is explored by Dikshit
et al. (Dikshit and Satyam 2018) by using probabilistic approach.
For Sikkim, Sengupta et al. (2010) have related the rainfall and
landslide event that occured at Lanta Khola, North Sikkim and
derived E-D threshold for the region. However, the exact nature of
the relation between rainfall and landslide initiation in the Sikkim
region is still not completely understood.

Sikkim is a state, which witnesses heavy inflow of tourists, both
from the country as well as from abroad. Landslides result in
damaging roads which leads to remote areas being cut-off, which
creates difficulties in travel as well as rescue operations. All this
indicates that if a reliable early warning is available in Sikkim, it
will contribute to better risk mitigation. However, currently, such a
system is not in place for Sikkim. In this paper, an attempt is made
to establish a regional threshold for Sikkim and a local threshold
for Gangtok. The objective of the present study is to arrive at a
meaningful rainfall threshold that can be applied in a real-time
landslide early warning system (R-LEWS) in Chandmari, Gangtok,
Sikkim. A multi-sensor-based system for real-time monitoring and
early warning of landslides is implemented in Chandmari with the
pilot stage completed in 2015 (Vasudevan et al. 2016; Ramesh et al.
2017). The newly developed thresholds will be integrated into the
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first level of the multi-level warning model designed for the system
deployed in Chandmari.

Study area
Sikkim is considered as one of the major landslide-prone areas
with the majority of the population inhabiting hilly terrains that
are vulnerable to landslide. This section highlights the geography
of our study area in brief which include (i) Sikkim, a state in
Northeast India, for which the regional rainfall threshold has been
proposed, (ii) Gangtok, a city in the district of East Sikkim, for
which the local level rainfall threshold has been developed, and
(iii) Chandmari, a locality within Gangtok, where an early warning
system based on the Internet of Things (IoT) has been deployed.
The state extends approximately 114 km from north to south and
64 km from east to west and has a total geographical area of
7096 km2. The state has four districts, namely (a) East district,
(b) West district, (c) North district, and (d) South district (Fig. 1a)
with their headquarters at Gangtok, Gyalshing, Mangan, and
Namchi respectively. Sikkim with highly fragile geology and rug-
ged topography is highly affected by various mass movements.
From south to north, the Main Frontal Thrust (MFT), Main
Boundary Thrust (MBT), and Main Central Thrust (MCT) cross
the state running in east-west direction in which MCT is having a
very irregular shape. The mountains of Donkya ranges in the east
while the Singalila ranges in the west are segregated by Nathu la
and Jalepa la, which provides a trade route between Sikkim and
China (Tamang et al. 2005). Due to the presence of active thrust
zones and heavy rainfall surges, the area experiences many land-
slides during monsoon. The Sikkim State Disaster Management
Authority (SSDMA 2012) provides the landslide susceptibility of
the various regions of Sikkim. These data are combined for creat-
ing the susceptibility map of Sikkim as depicted in Fig. 1c.

Gangtok in East Sikkim has its terrain highly dissected with steep
gorges, broad valleys, and ridges and has an elevation ranging from
350 to about 4630 m covering an area of 945 km2.The location of
Gangtok within Sikkim is shown in Fig. 1a. The main lithological
units of the Gangtok region are gneises, Lingse granite gneiss, schis-
tose rocks, and medium to low-grade metasedimentary rocks.

Chandmari location shown in Fig. 1b, in East Gangtok lying at
an elevation of 1650 m, had witnessed many landslides in past and
is one of the highly susceptible areas. Here the basement rock is of
medium- to high-grade gneisses of the Paro formation overlying
staurolite and mica/garnet-rich schist. The predominant rock min-
erals are quartz, feldspar (orthoclase and plagioclase), biotite,
muscovite, and chlorite. The mineral lineation of biotite is ranging
between 35 and 45° towards southeast. The landslides in the area
are mostly rainfall-induced (Vasudevan and Ramanathan 2016).
The topsoil is mostly sandy loam to clayey overlying on highly
weathered bedrock whose thickness varies up to 20 m. The
weathering is predominantly by physical integration as well as
chemical decomposition processes (Dubey et al. 2005). The general
slope is between 35 and 45° except few areas where slope is more
than 60°. The orientation of fracture is parallel to the slope which
makes the site prone to landslide (Thambidurai el. al 2017).

Data and methodology
Daily rainfall observations from the India Meteorological Depart-
ment (IMD) during the period 1990–2017 and the rainfall

observations from our R-LEWS in Chandmari from 2015 onwards
were utilized for this work. The daily rainfall data from IMD were
obtained from six stations of Sikkim, namely Gangtok, Mangan,
Namathang, Mazitar, Dentam, and Damthang. The rainfall data
availability over these six stations was not uniform in time. For
instance, the rainfall observations from Gangtok are available
during 1990–2017, whereas data from Mangan is available only
for 2001–2017 periods. The location of the rain gauges (from which
the rainfall observations for this study were obtained) and land-
slide events is indicated in Fig. 1d. IMD rainfall observations are
available daily at 0830 h Indian Standard Time (0300 UTC).
Details of 88 landslide events that had occurred for the duration
1990–2017 have been collected from the reports of the Geological
Survey of India (GSI), online sources, and newspapers (Bureau
2016; Froude and Petley 2018; Giri 2018). Some authors have tried
to automatically retrieve landslide data from newspapers and to
use them in EWS (Battistini et al. 2013, 2017). However, so far, such
automatic technique has not been utilized in the current study.
Since the landslide events are also collected from the news reports
in addition to scientific documents, all details regarding these
e v e n t s i n c l u d i n g t h e i r t y p o l o g y a r e n o t a l w a y s
available (Varnes. 1978; Cruden & Varnes. 1996). This might mean
that landslides of all typologies may be included in the creation of
the threshold. This approach of considering all available landslides
of unspecified typologies is followed by many researchers (Bhasin
et al. 2002; Anbarasu et al. 2010; Sengupta et al. 2010; Nerella et al.
2019). In the current study, ID thresholds were developed in two
stages. At the initial stage, rainfall observations and landslide
event details over the whole Sikkim area are used to develop a
regional ID threshold for the entire state of Sikkim. Further, the
rainfall and landslide events from Gangtok were used to develop a
local threshold equation for Gangtok City. Rain observations from
our system deployed in Chandmari are available at a very high
frequency (every 5 min) for the period 2015–2018 and have been
utilized for validation of the threshold equations.

Development of intensity duration rainfall thresholds
Intensity–duration threshold equations connect the mean rainfall
intensity (I) with the rainfall event duration (D) in the general
form I = α D−β + c where α, β, and c are empirical parameters.
Typically, c = 0. Then from the log-log plot of duration and inten-
sity, α is revealed to be the scaling factor (intercept) and β to be
the slope of the graph. Therefore, the nature of the intensity–
duration threshold equation indicates that while a short burst of
intense rainfall can trigger slope failure, a small intensity rainfall
event of longer duration also might result in a landslide (Guzzetti
et al. 2007). Whether or not mass movement actually occurs due to
such a rainfall event depends on other hydrogeological parameters
pertaining to slope stability in addition to the amount of rainfall
obtained. The majority of the existing rainfall threshold equations
encompass 1 to 100 h durations and 1 to 200 mm/h intensities
(Guzzetti et al. 2007). Depending on the availability of precipita-
tion observations, either hourly or daily intensities of rainfall are
generally considered for producing the equations (Gabet et al.
2004; Glade et al. 2000; Khan et al. 2012; Kanungo and Sharma
2014; Leonarduzzi et al. 2017; Dikshit and Satyam 2018).

Sikkim experiences rainfall throughout the year. The character-
istics and variability of rainfall in Sikkim are analyzed in Fig. 2.
The temporal variability follows the seasonal variations over the
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Indian subcontinent. The daily rainfall observations from the six
stations for the period 1990–2017 are utilized to generate long-term
average daily rainfall (in mm) over Sikkim. The bar graph in Fig. 2
illustrates the climatic rainfall pattern over Sikkim during 1990–
2017. On an average, Sikkim experiences at least a small amount of
rainfall almost all months in a year and the peak rain is observed
during the monsoon months. It can be seen that the deviation is
low during the months of June to September, which is the mon-
soon season in India. The deviation is largest at the beginning of
June and at end of September. Figure 3 shows the rainfall pattern
of Gangtok region from 1990 to 2017. The landslide pattern also
follows the general trend of rainfall pattern with the number of
landslides being larger during monsoon months as compared with
other seasons.

The area-wise and monthly distribution of rainfall and avail-
able landslide events in Sikkim, which is gathered from GSI
reports, online sources, and newspapers during 1990–2017, are
depicted in Fig. 4 a and b respectively. From Fig. 4a, it can be
inferred that East Sikkim has the highest annual rainfall and it
has witnessed more landslides as compared with the other
regions of Sikkim. Furthermore, it is evident from Fig. 4b that
there is variability in the number of landslide events within a

year with respect to the rain. The major rainy season in India is
the southwest monsoon or summer monsoon season during
June to September, followed by the northeast monsoon or
post-monsoon season during October to November. The winter
season (December–February) and summer or pre-monsoon sea-
son (March–May) are typically seasons during which rainfall
received is scanty. The Indian summer monsoon season with
an average monthly rainfall of 350 to 500 mm has the maximum
number of landslide events. There were no reported landslide
events during the months February and March for the period
1990–2017.

Regional rainfall ID threshold for Sikkim
The majority of the rainfall ID thresholds in literature utilize
rainfall intensity in millimeter per hour and the duration in hours.
However, for the present study, since the available rainfall obser-
vations are daily accumulated, we have connected rain intensity in
milliliter per day with rainfall event duration also in days. Based
on a detailed analysis of rainfall data, a rainfall event is defined as
accumulated rainfall over the whole of Sikkim being greater than
or equal to 2 mm per day. As depicted in Fig. 1d, 88 landslide
events obtained during the period 1990–2017 were used for this

Fig. 1 Maps displaying the study areas Sikkim and Gangtok. a Location of Sikkim in India (27.5330° N, 88.5122° E). b Location of Chandmari (27.3383° N, 88.6233° E) and
Gangtok (27.3389° N, 88.6065° E). c The landslide susceptibility map of Sikkim (SSDMA. 2012). d Map showing the location of available landslide events during 1990–2018
and the location of rain gauges in Sikkim considered for this study
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study. The empirical data of rainfall intensity and event duration is
fitted using the constrained least square regression.

Objective : minimize Σ Ii−αDi
−β� �2

Subject to : ∀ Di; Iið Þ : Ii > αDi
−β

where the (Di, Ii) represents the duration in days and the
intensity in milliliter per day. The threshold equation is obtained
by optimizing the coefficients α and β using an efficient multi-
objective optimization, non-dominated sorting genetic algorithm
II (NSGA-II) (Deb et al. 2002; Liu et al. 2016). The resulting
threshold equation obtained for Sikkim is given by,

I ¼ 43:26 D−0:78 ð1Þ

The log-log curve for the intensities and durations of rainfall
events is shown in Fig. 5. The curve has a minimum duration of
1 day and a maximum of 30 days. The above equation indicates
that there is lesser chance of landslide occurrence in Sikkim if the
rainfall is below 43.26 mm in a day. For a rainfall event of 30 days
duration, the minimum intensity comes down to 3.04 mm/day.
This result indicates that even rainfall intensities as low as
3.04 mm/day can contribute to slope instability, provided the
rainfall occurs continuously. From the rainfall characteristics of
Sikkim, indicated in Fig. 2, such conditions do occur in Sikkim
from mid-April through September. Figure 4b shows that the
number of landslides over Sikkim also increases from May and
peaks in September. The effect of antecedent rainfall on the initi-
ation of a landslide event is thus indicated by this result.

Local ID threshold for Gangtok
The initiation of landslides depends on the geomorphology of the
location where it occurs. Hence, the thresholds for slope instability
differ from one location to another. This indicates the necessity for
identifying rainfall thresholds for specific locations that are land-
slide prone. The current study, in addition to developing a thresh-
old equation for the entire state of Sikkim, explores the ID
threshold for Gangtok. Utilizing a similar methodology as that
applied for the entire Sikkim, a threshold equation that is appli-
cable over Gangtok was obtained as follows:

I ¼ 100 D−:92 ð2Þ

The above equation indicates a steeper curve than the regional
ID threshold equation. According to this equation, slope instability
would not occur if the rainfall received in a day is less than
100 mm. However, it also conveys that rainfall of intensity of
4.99 mm/day observed for 26 days could also result in a landslide.
Figure 6 shows that the landslide events are more clustered to-
wards the right end of the graph. This indicates that most of the
landslides occur in Gangtok are due to comparatively lower inten-
sity rainfall received for longer durations. This shows the influence
of soil moisture and antecedent rainfall conditions on landslides
in this area. A further in-depth explanation of this result would
require more extensive investigation on the hydrological interac-
tions due to rainfall infiltration, which is beyond the scope of the
current study.

The threshold for Sikkim, represented by Eq. (1) is compared
with some of the existing regional thresholds over the Himalayan
region (Fig. 7). Since the proposed equations are defined for 1 to
30 days duration (24 h to 720 h), a comparison is performed with
existing equations that are valid for the same time duration.
Equation (1) lies within the envelope of existing regional ID

Fig. 2 Boxplot containing the monthly average and 95% confidence interval
(1.96 + SD) of rainfall for the period 1990–2017 for Sikkim. The lines above the
boxplot indicate the maximum rainfall during each month and the line below the
boxplot indicates the minimum rain during each month. The red dot inside the box
plot is the mean rainfall for each month

Fig. 3 Boxplot containing the monthly average and 95% confidence interval
(1.96 + SD) of rainfall for the period 1990–2017 for Gangtok. The lines above
the boxplot indicate the maximum rainfall during each month and the line below
the boxplot indicates the minimum rain during each month. The red dot inside the
box plot is the mean rainfall for each month
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thresholds over the Himalayas, as seen from Fig. 7. Since Caine
(1980) global threshold equation remains an important benchmark
in comparing various threshold equations, it is also included in
Fig. 7.

The proposed equation for Sikkim is also validated using the
rainfall observations from the R-LEWS in Chandmari. From 2015
onwards, observations are available from the deployed weather
station in Chandmari. From these observations, all the rainfall
events were identified. In order to check how the proposed
threshold equation performs over Chandmari, the rainfall
threshold is plotted along with all the rainfall events to identify
the ones that exceeded the threshold and ones that did not. These
rainfall events were analyzed with the landslide events available
during 2015–2018 time period in order to distinguish among

them the correctly predicted landslides (true positive, TP), cor-
rectly predicted non-landslides (true negative, TN), false alarms
(false positive, FP), and missed alarms (false negative, FN) as
shown in Fig. 8. The exact number of landslide events that
happened remains unknown. The proposed threshold was able
to correctly predict (true positive) 9 out of 10 available landslide
events, which is indicated by the red dots shown in Fig. 8. During
the validation period, only a single missed alarm was identified.
The threshold was able to correctly identify the rainfall events,
which did not trigger landslides.

To evaluate the proposed threshold, performance evaluation
has been carried out between the existing rainfall thresholds and
proposed rainfall threshold using available data from 2015 to 2018.
The rainfall events are classified into TP (threshold crossed and
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Fig. 4 Distribution of rainfall and major landslides (considered in this study) that occured in Sikkim during 1990–2017 plotted over different regions/districts (a) and
months (b). The bars refer to landslide count and dashed line represent the mean monthly rainfall

Fig. 5 Regional rainfall intensity–duration threshold for the rainfall events, which led to landslide occurrences in Sikkim for the period 1990–2017. The red dots refer to
the rainfall with reported landslides and the green crosses shows the rainfall without reported landslide
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landslide occurred), TN (threshold not crossed and no landslide),
FP (threshold crossed and no landslide), and FN (threshold not
crossed and landslide occurred). Along with these, several

statistical parameters have been calculated to evaluate the quality
of proposed thresholds as shown in Table 1 (Lagomarsino et al.
2015; Rosi et al. 2012; Rosi et al. 2015).

Fig. 6 Local rainfall intensity–duration threshold for the rainfall events, which led to landslide occurrences in Gangtok for the period 1990–2017. The red dots refer to the
rainfall with reported landslides and the green crosses shows the rainfall without reported landslide

Fig. 7 Comparison of the proposed regional ID threshold for Sikkim with the global threshold defined by Caine (1980) and some of the existing regional thresholds
defined for Himalayan region by Mathew (2014), Kanungo and Sharma (2014), Dikshit (2017), and Dahal and Hasewaga (2008)
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& Sensitivity (Se): ability to properly classify rainfalls that trig-
gered landslides;

& Specificity (Sp): ability to properly classify rainfalls that did not
trigger landslides;

& Positive prediction power (PPP): the probability of correctly
classifying a rainfall that triggered landslides;

& Negative prediction power (NPP): the probability of correctly
classifying a rainfall that not triggered landslides.

& Likelihood ratio (Lr): the ratio between sensitivity and
specificity;

& Efficiency (Ef): Evaluate the overall performance of a model,
measuring the proportion of correct predictions with respect
to the total

& True skill statistic (TSS): Defined as sensitivity - (1—specifici-
ty). It ranges from − 1 to + 1, where + 1 indicates perfect model
and values of zero or less indicates a performance no better
than random (Ruete and Leynaud 2015).

The comparison between statistical indexes of the study area
and other thresholds shows a general improvement of the perfor-
mance. Performance analysis showed that the regional threshold
of Sikkim gave good results since both sensitivity and specificity of
every threshold was close to 1. Specificity and NPP result was
found to be slightly higher in the current threshold, which means
that the new threshold is able to properly classify the rainfall that
did not trigger landslides. In particular, the sensitivity of the
Sikkim threshold is higher than the sensitivity calculated for the
other thresholds, which means that in general, the Sikkim thresh-
old correctly classifies the rainfall that triggered landslides. The
specificity of the Sikkim threshold is greater than 0.7, and higher
than the other thresholds, which means a good capacity of
avoiding FP result. Also, the TSS, integrative measure of landslide
prediction performance, of the proposed threshold has higher and
positive value compared with other thresholds. It was observed
that when compared with the existing threshold equations, the
proposed thresholds perform reasonably well.

The current study makes use of daily rainfall observations
available over the study region Sikkim. Furthermore, it has a
complex orography with many places being difficult to access.
Therefore, it is possible that some of the landslides that occur in
such places may not get reported. It is possible that our land-
slide event database has missed such events. It is also probable
that some of the reports could have errors with respect to the
time of the event. Availability only of daily observations and
uncertainties in the time of reported events indicates that de-
termination of triggering vs. non-triggering events will have
uncertainties. The proposed thresholds in the current study
are based on triggering events alone. The availability of high-
frequency rainfall observations will mitigate the uncertainties in
the rainfall observations to a great extent, even though the
uncertainties in landslide detection remain. The more advanced
techniques of determining rainfall thresholds based on trigger-
ing and non-triggering events might help in improving the
warnings. A more improved version of the threshold equations
will be constructed in the future using the real-time observa-
tions from the deployed EWS systems, overcoming these
limitations.

Effect of antecedent conditions on landslide initiation in Sikkim
The amount and duration of rainfall occurring prior to slope
failure is a key factor that influences the triggering of landslides.
Previous studies such as Kim et al. (1991), Heyerdahl et al. (2003),
Crozier et al. (1999), Glade et al. (2000), Aleotti (2004), Chleborad
et al. (2003), Dahal and Hasewaga (Dahal and Hasegawa 2008),
and Kanungo and Sharma (2014) have considered the effect of
antecedent rainfall in determining rainfall thresholds. According
to the area under consideration, antecedent rainfalls of various
durations are found to be significant in landslide initiation, in each
of these studies. The analysis performed by Kanungo and Sharma
(2014), in determining the impact of antecedent rainfall conditions
for Garhwal, Himalayas, India, is followed here. Figure 9 shows the
plot of daily cumulative rainfall on the day of each event vs.
rainfall prior to the landslide, aggregated for 3, 5, 7, 10, 15, and
20 days.

Daily rainfall associated with landslide initiation is com-
pared with the cumulative rainfall for 3, 5, 7, 10, 15, and 20 days
prior to the failure in Fig. 9 and in more detail in Fig. 10a–f.
The diagonal line in each of the graphs bisects it, with each half
indicating the bias towards either x-axis or y-axis. The point
that may lie above the diagonal shows failures that are biased
towards the daily rainfall. The points falling on the diagonal
line indicate landslides with the daily rainfall amount the same
as cumulative antecedent rainfall. Majority of the landslide
events in Fig. 10 are influenced by the antecedent rainfall
condition, as indicated by majority of the points falling below
the diagonal line. The relation between daily-accumulated rain-
fall on the day of slope failure and 3-day accumulated rainfall
prior to landslide initiation is shown in Fig. 10a. The straight
line bisects the graph. Figure 10a shows that 16% landslides are
biased towards daily rainfall, whereas 84% landslides are biased
towards 3-days accumulated rainfall. Similarly, Fig. 10b–f show
the bias of daily rainfall vs. accumulated rainfall for 5 days,
7 days, 10 days, 15 days, and 20 days. The bias towards ante-
cedent rainfall increases from 5 days (92%). The bias towards
the antecedent rainfall is the same for 7 days, 10 days, and
15 days. These results indicate the significance of antecedent
rainfall conditions in landslide initiation over Sikkim. Further
exploration of this result is required to arrive at a robust
relation between the two.

Discussion
Through this section, we would like to discuss and shed some light
on (i) how the proposed thresholds are going to form a part of our
R-LEWS, (ii) some inferences that were obtained as part of this
study, and (iii) some challenges that are faced in this study. Even
though rainfall is the main trigger for landslide initiation, a heavy
rainfall event in itself may not always cause slope instability.
Rainfall ID thresholds provide a lower cut off to the rainfall values
below which there is a lower probability of occurrence of land-
slides. However, if such thresholds alone are used for providing
warnings, false alarms may result since soil properties and terrain
features also contribute to the initiation and timing of landslide
along with rainfall. This demands the incorporation of additional
parameters such as soil moisture, pore water pressure, and soil
movement for improving the reliability of a landslide-based EWS.
Hence, in addition to rain gauges, multiple sensors that capture
parameters such as pore pressure, moisture, and movement are
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selected for this purpose (Baum et al. 2005; Chleborad et al. 2008;
Thiebes 2012; Thiebes et al. 2014; Thiebes and Glade 2016; Piciullo
et al. 2018). As part of our R-LEWS, an integrated monitoring
module (called as Deep Earth Probes) consisting of several of these
heterogeneous sensors is presently deployed in the study area of
Gangtok. Based on the detailed geological, geomorphological, and
electrical resistivity tomography (ERT) survey of the study region,
11 locations were selected for the deployment of DEPs (Deep Earth
Probes) containing sensors which can monitor pore water pres-
sure, soil moisture, movement, etc., (Fig. 11) (Ramesh 2009). The
system was designed for continuous monitoring of meteorological,
geophysical, and hydrological parameters that may trigger a
rainfall-induced landslide. This landslide monitoring system in
Sikkim has a total of more than 130 geophysical sensors connected
to these 11 DEPs, and collects the real-time data dynamically in the
required sampling frequency.

The R-LEWS was piloted at Sikkim in 2015 and the full-scale
deployment was completed in 2018. The real-time data from

multiple sensors are captured and stored in the database from
2015 onwards. Rainfall data taken from the database of our
deployed system were used for the validation of the thresholds
developed in this study. The observations from the heteroge-
neous sensors will be utilized in establishing multi-level land-
slide warnings as part of the decision support system. The
severity of the warnings increases with each level and the con-
cerned authorities can caution the public based on the intensity
of the warning level. The rainfall threshold equation analyzed in
the current study will form the first level of this multi-level
warning framework. The justification of this being the fact that
rainfall is the base factor which results in variation in soil mois-
ture and pore pressure. Once the rainfall received exceeds the
threshold, observations from other sensors are utilized for de-
termining the succeeding levels of warning so as to enhance the
reliability of the whole system. We utilized this methodology so
that false alarms that might result from warning based on rainfall
threshold alone could be reduced.

Fig. 8 Validation of the proposed Sikkim rainfall threshold using rainfall events of Chandmari site during 2015–2018

Table 1 Results of performance analysis and validation statistics of proposed threshold and existing regional rainfall thresholds in Sikkim using the data during 2015–
2018. Se = TP/(TP+FN); Sp = TN/(TN + FP); PPP = (TP)/(FP + TP); NPP = TN/(TN + FN); Lr = Se/(1 - Sp); Ef = (TP+TN)/(TP+TN+FN+FP); TSS = Se − (1 − Sp)

Thresholds TP TN FP FN Se Sp PPP NPP Lr Ef TSS

Regional threshold,
Sikkim

9 73 26 1 0.9 0.74 0.26 0.99 3.43 0.75 0.64

Mathew et al. (2014) 0 41 58 10 0 0.41 0 0.8 0 0.38 − 0.59

Kanungo and Sharma
(2014)

2 33 66 8 0.2 0.33 0.03 0.8 0.3 0.32 − 0.47

Dikshit et al. (2017) 0 45 54 10 0 0.45 0 0.82 0 0.41 − 0.55

Dahal and Hasewaga
(2008)

3 9 90 7 0.3 0.09 0.03 0.56 0.33 0.11 − 0.61
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From this study, we could infer that the threshold equation
developed for Sikkim has similar characteristics like the other avail-
able global and regional models. Validation using rainfall observa-
tions from Chandmari indicates that while the proposed regional
threshold equation does capture all the landslide events, there are a
few rainfall events above the threshold line, which did not result in
landslides. This indicates the possibility of false alarms, whose oc-
currence might be due to the uncertainties in identifying the trigger-
ing of landslide events as well as due to the use of daily rainfall
observations. The comparison and validation of proposed equations
with existing global and regional threshold equations show that
using the proposed threshold equation will provide a better detailed
threshold value with a possibility of limited number of false alarms.
The limited number of false alarms also can be removed by integrat-
ing more data from future deployment or deploying denser rain
gauge networks and developing site-specific thresholds. This could
even be used for building a multi-level rainfall threshold model for
the state of Sikkim. This is also pointing to the necessity of estab-
lishing a more robust threshold equation for site-specific landslide
initiation specifically for Chandmari.

The current study also explores the dynamic behavior of ante-
cedent rainfall condition for landslide initiation in Sikkim by com-
paring the daily rainfall associated with landslide initiation with the
cumulative rainfall for 3, 5, 7, 10, 15, and 20 days before the landslide
event. The analysis clearly indicates the influence of antecedent
conditions in initiating slope failure. The current study points out
the necessity of better understanding the dynamics of the relation
between antecedent rainfall, topological terrain parameters, and
landslides. The thresholds developed and the technical system de-
ployed in Chandmari currently provide a good performance. In
future, the system aims to forewarn landslides, by integrating rainfall
forecasts which helps to predict where landslides are likely to occur
tomorrow.

Finally, we brief here some of the major challenges in developing
this rainfall threshold such as the constrained availability of historic
landslide events, rainfall events, and the other connected details.

These include uncertainties in both spatial and temporal scale. As
we mentioned earlier, the data from GSI website was our primary
source of information on landslide events, with additional events
collected from other online sources such as web news. But the
number of landslide occurrences used for this study may be very
limited compared with the actual number of events. This is because
only very limited landslide cases are reported by the online media,
especially those from the past decades when these online medias
were not prevalent, and also consistent and thorough landslide
mapping activities would not have been established in those days.
Hence, we could restrict using only some landslide events from these
study areas, thus adding to spatial uncertainties. Since our R-LEWS
was operational only recently, we had to depend on other sources for
obtaining the rainfall data and could obtain only daily-cumulated
rainfall data in contrary to the minute-wise data from our deployed
system. Usually higher frequencies of rainfall measurements are
beneficial to threshold determination; however, the present thresh-
old is developed using daily rainfall data, thus adding a limitation on
the temporal scale. This limitation can be addressed in future work
by fine-tuning the proposed models using the real-time minute-wise
data from our R-LEWS. However, the uncertainties due to landslide
event data still remain a challenge as complete mapping and record-
ing of landslide occurrences across all regions cannot be guaranteed.

Conclusion and future work
A robust R-LEWS containing heterogeneous sensors for capturing
spatio-temporal parameters of landslides is needed for a multi-
level warning which is not available in India other than Munnar,
Kerala (Ramesh 2009). The overview of such an R-LEWS deployed
in Chandmari, Sikkim, is presented in this paper. Even though
rainfall is the most common factor among the spatio-temporal
parameters of landslides in Sikkim, a reliable rainfall threshold
equation for landslide initiation over the region is presently not
available in literature. In the current study, a rainfall intensity–
duration regional threshold is proposed for Sikkim, India. In
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addition, a local threshold for Gangtok is also developed. The pro-
posed regional and local thresholds are able to give the first level
threshold for the initiation of landslides in Gangtok and Sikkim. The
above relations are formulated so that they can be utilized in an R-
LEWS for Sikkim. The effect of antecedent rainfall on landslide
initiation is also investigated. The proposed equations are validated
using rainfall observations from the R-LEWS deployed at
Chandmari. The proposed equations perform reasonably well over
Chandmari. A fully functional R-LEWS will perform better if the
physical and dynamic relationships between the various hydro-

geological parameters are included. Availability of observations at a
high frequency from all heterogeneous sensors of our deployment
site will help in reducing the uncertainties in data and to develop a
robust real-time site-specific multi-level warning system for
Chandmari. This is the objective of a future study.
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